Featured Research

from universities, journals, and other organizations

Hox Genes Control Path Of Neurons Responsible For Nervous System Development

Date:
June 16, 2008
Source:
Public Library of Science
Summary:
Scientists demonstrate that pontine neuron migration in mice is controlled by specific Hox genes. They show that by knocking out the expression of the Hoxa2 gene the path of the neurons changes, causing them to end up in the wrong part of the brain.

In this whole-mount lateral view of an embryonic day 17.5 mouse brain, an EGFP knock-in allele into the Hoxa2 locus allows direct visualization of pontine neurons during their migration and to their final destination in the anteroventral brain stem.
Credit: Rijli et al.

Pontine neurons are generated in the rear part of the brain and ultimately end up in the cerebellum, a region in the brain responsible for coordinating the senses and motor functions in the body. How these neurons make the journey across the brain has, until now, been somewhat of a mystery. In a new paper authors Filippo Rijli and colleagues demonstrate that pontine neuron migration in mice is controlled by specific Hox genes. They show that by knocking out the expression of the Hoxa2 gene the path of the neurons changes, causing them to end up in the wrong part of the brain.

Related Articles


Hox genes are crucial in the orchestration of organized growth in organisms ranging from plants to humans. The authors have identified a specific Hox gene, Hoxa2, which controls the pontine neurons' responsiveness to chemicals that attract and repel them, thus telling them where to go in the brain. The authors found that when the Hoxa2 gene was knocked out, the pontine neurons went to the bottom of the brainstem instead of going to the cerebellum.

To explain in detail, the Hoxa2 gene controls expression of the receptor, Robo. Robo is bound to the chemical, Slit, which prevents migrating neurons from responding to chemoattractants. The authors found that in knocking out Hoxa2, pontine neurons become insensitive to Slit signaling: the neurons ignore the repellant signal and head prematurely toward the chemoattractant, guiding them into the wrong part of the brain. The study also shows that the absence of Slit or Robo causes the same type of abnormal migrations caused by the absence of Hoxa2--further evidence that all three are integral to the same system.

Although this paper resolves some of the mystery of the neuron migration route, there is still more to explore. The authors found that not all neurons react to a loss of Hoxa2, suggesting these genes function in a specific manner and opening the search for other Hox genes that affect neuronal migration and the development of the mammalian brain.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Geisen et al. Hox Paralog Group 2 Genes Control the Migration of Mouse Pontine Neurons through Slit-Robo Signaling. PLoS Biology, 2008; 6 (6): e142 DOI: 10.1371/journal.pbio.0060142

Cite This Page:

Public Library of Science. "Hox Genes Control Path Of Neurons Responsible For Nervous System Development." ScienceDaily. ScienceDaily, 16 June 2008. <www.sciencedaily.com/releases/2008/06/080610092756.htm>.
Public Library of Science. (2008, June 16). Hox Genes Control Path Of Neurons Responsible For Nervous System Development. ScienceDaily. Retrieved April 19, 2015 from www.sciencedaily.com/releases/2008/06/080610092756.htm
Public Library of Science. "Hox Genes Control Path Of Neurons Responsible For Nervous System Development." ScienceDaily. www.sciencedaily.com/releases/2008/06/080610092756.htm (accessed April 19, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, April 19, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Dr. Oz Under Fire For 'Quack Treatments' Yet Again

Dr. Oz Under Fire For 'Quack Treatments' Yet Again

Newsy (Apr. 17, 2015) Ten doctors signed a letter urging Columbia University to drop Dr. Oz as vice chair of its department of surgery, saying he plugs "quack" treatments. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins