Featured Research

from universities, journals, and other organizations

Mercury-absorbent Container Linings Developed For Broken Compact Fluorescent Lamps

Date:
July 1, 2008
Source:
Brown University
Summary:
Researchers have discovered a nanomaterial that can absorb the mercury emitted from a broken compact fluorescent lamp. The researchers have created a mercury-absorbent container lining that can be used commercially. The packaging invention would relieve a major concern with CFL use and comes as CFL sales are projected to skyrocket.

Mercury Sponge. This electron microscope image shows the internal structure of the active sorbent lining. The cloth fibers are laced with active selenium nanoclusters to capture the mercury.
Credit: Division of Engineering, Brown University

Brown University researchers have discovered a nanomaterial that can absorb the mercury emitted from a broken compact fluorescent lamp (CFL). The researchers, led by Robert Hurt, professor of engineering, and engineering student Natalie Johnson, have created a mercury-absorbent container lining that can be used commercially. The packaging invention, for which Brown has applied for federal patents, would relieve a major concern with CFL use and comes as CFL sales are projected to skyrocket.

Related Articles


With rising energy prices and greater concern over global warming, compact fluorescent lamps (CFLs) are having a successful run. Sales of the curlicue, energy-sipping bulbs, which previously had languished since they were introduced in the United States in 1979, reached nearly 300 million last year. Experts expect that figure to rise steeply by 2012, when a federal law requiring energy-efficient lighting goes into effect.

There’s just one catch to this energy conservation story: Each CFL contains a small amount (3 to 5 milligrams) of mercury, a neurotoxin that can be released as vapor when a bulb is broken. The gas can pose a minor risk to certain groups, such as infants, small children and pregnant women. Mercury can escape from plastic bags containing discarded bulbs, which makes long-term storage, disposal or recycling tricky.

The obstacles have led to a debate over CFLs, illustrated by recent studies by the state of Maine and the nonprofit Mercury Policy Project over CFL use and safe levels of mercury in the bulbs. Now, a team of researchers at Brown University led by Robert Hurt, professor of engineering, and engineering student Natalie Johnson may have found a solution to the environmental conundrum.

The scientists, along with other Brown engineering students and Steven Hamburg, associate professor of environmental studies, have invented mercury-absorbent materials for commercial use. The team has created a prototype – a mercury-capturing lining attached to the inside of store-bought CFL packaging. The packaging can be placed over the area where a bulb has been broken to absorb the mercury vapor emanating from the spill, or it can capture the mercury of a bulb broken in the box.

The researchers also have created a specially designed lining for plastic bags that soaks up the mercury left over from the CFL shards that are thrown away.

The mercury-absorbent packaging and the lined plastic bags can be safely discarded and recycled, the researchers say, alleviating concerns about contamination or other unwanted environmental consequences.

“It’s a complete management system to deal with a bulb broken in the home,” says Hurt, director of Brown’s Institute for Molecular and Nanoscale Innovation, which concentrates on the study and commercial application of nanotechnology.

Brown applied earlier this year for federal patents covering the mercury-absorption packaging and the absorbent material, and the university expects soon to begin discussions with companies on manufacturing the new technology.

“These patents represent how Brown University translates fundamental research into an application that can have an impact on society – in this case, a technology that could protect households from mercury exposure and that could also energize green business growth,” says Clyde Briant, vice president for research at Brown.

The inspiration for the invention followed the discovery by Hurt, Johnson and fellow Brown researchers that a variant of a substance called nanoselenium – a form of selenium, a trace element used in diet supplements, among other products – absorbed virtually all the mercury emitted from a broken CFL. That finding appears this week in the online edition ofEnvironmental Science & Technology.It is the first scientific paper that measures the timing and extent of mercury released from broken CFLs and that reveals the mercury-absorption potential of various nanomaterials, the researchers say.

Mercury Sponge This electron microscope image shows the internal structure of the active sorbent lining. The cloth fibers are laced with active selenium nanoclusters to capture the mercury. Credit: Division of Engineering, Brown Universuty The engineers tested 28 substances in all. Their experiments showed that one type of nanoselenium absorbed mercury vapor the most effectively. The selenium atoms bond with the mercury atoms to form mercury selenide (HgSe), a stable, benign nanoparticle compound, Hurt says.

The nanoselenium “just loves mercury,” Hurt adds.

In controlled experiments, the scientists found that 99 percent of mercury vapor from a CFL broken in a sealed chamber was mopped up by nanoselenium in concentrations ranging from 1 to 5 milligrams.

The small amount needed to capture the mercury vapor bodes well for manufacturing mercury-absorbent cloths or lining at a low cost, Hurt says. The precise manufacturing costs will need to be determined by interested companies.

The National Institute of Environmental Health Sciences Superfund Basic Research Program funded the research.

The first prototype created by the Brown team is a three-layered cloth that is attached to the packaging or box containing the CFLs. The nanoselenium-coated layer would be sandwiched between the cardboard packaging and a cloth on the inside of the box containing the bulbs. The extra layers prevent people from coming into contact with the nanoselenium layer.

If a bulb breaks, the user simply undoes the packaging and lays it on the spot where the break occurred. The absorbent material is effective on different surfaces, including carpets and hardwood floors. “It works like a charm,” Hurt says.

The second prototype incorporates the same layering and is fitted into a small, sealable plastic bag. The lining absorbs the mercury in the sealed bag, preventing it from escaping.

“More work is needed,” Hurt says, “but this appears to be an inexpensive solution that can remove most of the safety concerns associated with CFL bulbs.”


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Mercury-absorbent Container Linings Developed For Broken Compact Fluorescent Lamps." ScienceDaily. ScienceDaily, 1 July 2008. <www.sciencedaily.com/releases/2008/06/080627163055.htm>.
Brown University. (2008, July 1). Mercury-absorbent Container Linings Developed For Broken Compact Fluorescent Lamps. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/06/080627163055.htm
Brown University. "Mercury-absorbent Container Linings Developed For Broken Compact Fluorescent Lamps." ScienceDaily. www.sciencedaily.com/releases/2008/06/080627163055.htm (accessed October 25, 2014).

Share This



More Earth & Climate News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins