Featured Research

from universities, journals, and other organizations

Blood-related Genetic Mechanisms Found Important In Parkinson's Disease

Date:
July 22, 2008
Source:
University of Wisconsin-Madison
Summary:
What does the genetics of blood cells have to do with brain cells related to Parkinson's disease? From an unusual collaboration of neurologists and a pharmacologist comes the surprising answer: genetic mechanisms at play in blood cells also control a gene and protein that cause Parkinson's disease.

What does the genetics of blood cells have to do with brain cells related to Parkinson's disease? From an unusual collaboration of neurologists and a pharmacologist comes the surprising answer: Genetic mechanisms at play in blood cells also control a gene and protein that cause Parkinson's disease.

The finding, by scientists from the University of Wisconsin School of Medicine and Public Health (SMPH), Harvard University-affiliated Brigham and Women's Hospital and the University of Ottawa, may lead to new treatments for the neurological disorder that affects as many as 1.5 million Americans.

The study is published in the Proceedings of the National Academy of Sciences Online Early Edition the week of July 21-25, 2008.

Patients with Parkinson's disease (PD) have elevated levels of the protein called alpha-synuclein in their brains. As the protein clumps, or aggregates, the resulting toxicity causes the death of neurons that produce the brain chemical dopamine. Consequently, nerves and muscles that control movement and coordination are destroyed.

The researchers discovered that the activity of three genes that control the synthesis of heme, the major component of hemoglobin that allows red blood cells to carry oxygen, precisely matched the activity of the alpha-synuclein gene, suggesting a common switch controlling both.

The scientists then found that a protein called GATA-1, which turns on the blood-related genes, was also a major switch for alpha-synuclein expression, and that it induced a significant increase in alpha-synuclein protein. Finally, they demonstrated that a related protein -- GATA-2 -- was expressed in PD-vulnerable brain cells and directly controlled alpha-synuclein production.

"Very little was known previously about what turns on alpha-synuclein in brain cells and causes variations in its expression," says Emery Bresnick, a UW-Madison professor of pharmacology who is an expert on GATA factors and their functions in blood. "Understanding how GATA factors work in the brain may provide fundamental insights into the biology of Parkinson's disease."

The new knowledge also may allow scientists to design therapies that keep alpha-synuclein levels within the normal range.

"Simply lowering alpha-synuclein levels by 40 percent may be enough to treat some forms of Parkinson's disease," says Dr. Clemens Scherzer of Harvard. "So far, researchers have focused on ways to get rid of too much 'bad' alpha-synuclein in Parkinson patients' brains. Now we will be able to tackle the problem from the production site, and search for new therapies that lower alpha-synuclein production up front."

Scherzer and Dr. Michael Schlossmacher, now at Ottawa, had independently analyzed the blood of PD patients and controls in a search for genes that were active in the disease. They both were surprised to notice large amounts of alpha-synuclein in the blood. To understand what it was doing there, Scherzer's group used gene chip data to see whether any of the thousands of genes active in blood were linked to alpha-synuclein. They found a gene expression pattern composed of alpha-synuclein and the heme genes, one of which Bresnick had previously shown to be a direct GATA-1 target gene.

The neurologists contacted Bresnick. The UW group rapidly determined that GATA-1 directly activated the alpha-synuclein gene, and that finding led the collaborators to discover that GATA-2 is expressed in regions of the brain that are relevant to PD.

"We all were excited because we realized that GATA-2 was active in the relevant brain regions, and so there could be a connection," says Bresnick. Together the researchers set out to examine whether common mechanisms activated alpha-synuclein transcription in both the blood and nerve cells.

The studies showed that GATA-1 and GATA-2 proteins find the alpha-synuclein gene, stick to it and then directly control it.

"This is not an indirect pathway; it is direct regulation of the gene," says Bresnick. "This directness provides the simplest scenario for creating a therapeutic strategy."

Bresnick, Schlossmacher and Scherzer are working with geneticists to see if possible abnormalities in the GATA-2 gene may exist in PD patients, stimulating more production of alpha-syinuclein.

"The discovery of the link between GATA proteins and the alpha-synuclein gene is like finding a long-sought-after molecular switch," says Schlossmacher. "We were very fortunate to find in Emery Bresnick's team the ideal partner in this endeavor."

The family of GATA factors consists of six members, and some of them, beyond GATA-2, may also be influencing alpha-synuclein expression in the brain, adds Schlossmacher.

"Identifying these would further add to the complexity of regulating the production of the 'bad player' in Parkinson's disease," he says.

Says Bresnick, "The $10 million question will be does deregulation of the GATA mechanism in humans lead to alpha-synuclein overproduction and Parkinson's disease."


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Blood-related Genetic Mechanisms Found Important In Parkinson's Disease." ScienceDaily. ScienceDaily, 22 July 2008. <www.sciencedaily.com/releases/2008/07/080721173752.htm>.
University of Wisconsin-Madison. (2008, July 22). Blood-related Genetic Mechanisms Found Important In Parkinson's Disease. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2008/07/080721173752.htm
University of Wisconsin-Madison. "Blood-related Genetic Mechanisms Found Important In Parkinson's Disease." ScienceDaily. www.sciencedaily.com/releases/2008/07/080721173752.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Study Links Male-Pattern Baldness To Prostate Cancer

Study Links Male-Pattern Baldness To Prostate Cancer

Newsy (Sep. 16, 2014) New findings suggest men with a certain type of baldness at age 45 are 39 percent more likely to develop aggressive prostate cancer. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins