Featured Research

from universities, journals, and other organizations

Amazon River Powers Tropical Ocean's Carbon Sink

Date:
July 22, 2008
Source:
University of Southern California
Summary:
Nutrients from the Amazon River spread well beyond the continental shelf and drive carbon capture in the deep ocean. This new finding does not change estimates of the oceans' total carbon uptake, but it reveals the surprisingly large role of tropical oceans and major rivers.

The Amazon River's outflow extends thousands of kilometers into the Atlantic Ocean.
Credit: Norman Kuring/NASA

Nutrients from the Amazon River spread well beyond the continental shelf and drive carbon capture in the deep ocean, according to the authors of a multi-year study.

Related Articles


The finding does not change estimates of the oceans' total carbon uptake, but it reveals the surprisingly large role of tropical oceans and major rivers.

The tropical North Atlantic had been considered a net emitter of carbon from the respiration of ocean life. A 2007 study estimated that ocean's contribution to the atmosphere at 30 million tons of carbon annually.

The new study, appearing in PNAS Early Edition the week of July 21, finds that almost all the respiration is offset by organisms called diazotrophs, which pull nitrogen and carbon from the air and use them to make organic solids that sink to the ocean floor.

Diazotrophs "fix" nitrogen from the air, enabling them to thrive in nutrient-poor waters. They also require small amounts of phosphorus and iron, which the Amazon River delivers far offshore. That is all the diazotrophs need to pull carbon from the air and sink it in the ocean.

The Amazon River is the largest river in the world by volume; it also has the largest drainage basin on the planet, accounting for some one fifth of Earth's total river flow. Because of its vast dimensions, it's sometimes called "the river sea."

The other great tropical rivers of the world also may contribute to carbon capture, said senior author Doug Capone, professor in the USC Wrigley Institute for Environmental Studies at the University of Southern California, adding that studies on such rivers are in progress.

The study's results present new options for the controversial practice of iron fertilization. Some biologists believe that seeding the oceans with iron could increase production of carbon-fixing organisms and help mitigate climate change.

Upwelling circulation in cooler waters makes them unlikely candidates for long-term carbon capture, said Capone, who explained that a permanent carbon sink instead may be more feasible in the warm oceans.

Capone said that iron fertilization would increase diazotroph activity and that the stratified tropical waters should be able to keep captured carbon solids from returning to the surface in the short term. "The most appropriate places are probably not the high latitudes but rather the low-latitude areas where nitrogen fixation is a predominant process," Capone said.

But Capone also noted the risks of iron fertilization, including increased production of other greenhouse gases and unpredictable effects on the food web.

Nevertheless, he said, "if we choose as a human society to fertilize areas of the oceans, these are the places that probably would get a lot more bang for the buck in terms of iron fertilization than we would at high latitudes."

The other authors on the multi-year study were researchers from the University of Georgia, Athens; San Francisco State University; the University of Liverpool; the University of Hawaii, Honolulu; Rutgers University; Georgia Institute of Technology; and UCLA.

Ajit Subramaniam of Columbia University was first author.

The National Science Foundation's Biocomplexity in the Environment program provided most of the project's funding.


Story Source:

The above story is based on materials provided by University of Southern California. Note: Materials may be edited for content and length.


Cite This Page:

University of Southern California. "Amazon River Powers Tropical Ocean's Carbon Sink." ScienceDaily. ScienceDaily, 22 July 2008. <www.sciencedaily.com/releases/2008/07/080721173759.htm>.
University of Southern California. (2008, July 22). Amazon River Powers Tropical Ocean's Carbon Sink. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2008/07/080721173759.htm
University of Southern California. "Amazon River Powers Tropical Ocean's Carbon Sink." ScienceDaily. www.sciencedaily.com/releases/2008/07/080721173759.htm (accessed October 26, 2014).

Share This



More Earth & Climate News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins