Featured Research

from universities, journals, and other organizations

Unexpected Key To Flowering Plants' Diversity

Date:
July 29, 2008
Source:
University of Tennessee at Knoxville
Summary:
New research may help explain the amazing diversity in the world's flowering plants, a question that has puzzled scientists from the time of Darwin to today. The findings, published by the Proceedings of the National Academy of Sciences, show that the ability of flowering plants -- known as angiosperms -- to quickly and efficiently move sperm from pollen to egg through a part of the plant was the key to their evolutionary diversity.

This image shows pollen tubes extending from grains of pollen in the rare vine Austrobaileya. University of Tennessee, Knoxville, researcher Joe Williams found that the tubes' ability to grow quickly played a major role in the evolution of the large variety of flowering plants.
Credit: Joe Williams/University of Tennessee, Knoxville

What began with an off-the-cuff curiosity eventually led Joe Williams to hang from the limbs of a tree 80 feet above the soil of northeastern Australia.

Related Articles


The things Williams, a University of Tennessee, Knoxville, researcher found there may help explain the amazing diversity in the world's flowering plants, a question that has puzzled scientists from the time of Charles Darwin to today.

Williams' findings, published online this week by the Proceedings of the National Academy of Sciences, show that the ability of flowering plants -- known as angiosperms -- to quickly and efficiently move sperm from pollen to egg through a part of the plant was the key to their evolutionary diversity.

His curiosity was based in the time it takes from when pollen lands on a plant to the time that its' seed is fertilized. Williams noticed a recurring theme in the research papers he read:

"They would usually describe how fertilization was occurring, but they never tell you much about timing," said Williams, an assistant professor of ecology and evolutionary biology at UT Knoxville.

For a seeded plant to fertilize, pollen that lands on the flower must grow a tube to carry sperm to the egg. In non-flowering plants, the pathway is usually short, because the pollen tube must destroy cells in its path, which is a time-consuming process. In flowering plants, though, pollen tubes are able to cover longer distances to the egg by essentially "squeezing" between cells. It is a trait that Williams says is vital to their diversification.

"The longer a plant takes to fertilize, for the pollen to reach the egg," said Williams, "the more chance there is for it to die."

When he studied the data he had collected through the years, Williams found that older lineages of flowering plants -- those on lower branches of the angiosperms' evolutionary family tree -- grew shorter tubes of pollen than those that went on to evolve into the diverse array of flowering plants that exist today.

That's what brought Williams to a harness in the rainforest of Australia. To confirm what he found in the data analysis, he pollinated -- by hand -- an ancient vine known as Austrobaileya that grows high in the canopy. He chose that plant, along with another plant found only on the Pacific island of New Caledonia and a water lily that grows high in the Colorado mountains, to test because they developed as species early in flowering plants' evolution.

He found that, when compared to more recently evolved species of angiosperms, the older plants grew shorter pollen tubes and took longer to do so than more diverse modern species. According to Williams, this indicates that these pollen tubes likely played a previously unknown role in spurring the evolution of the roughly 250,000 species of flowering plants we see today.

"As these plants gained the ability to grow pollen tubes faster and over longer distances," said Williams, "It gave them the ability to develop the much larger and more complex flowers as well as deeper ovaries with more seeds -- that is to say, larger fruits -- that we see around us today."

Williams' work was funded by UT Knoxville and the National Science Foundation.


Story Source:

The above story is based on materials provided by University of Tennessee at Knoxville. Note: Materials may be edited for content and length.


Cite This Page:

University of Tennessee at Knoxville. "Unexpected Key To Flowering Plants' Diversity." ScienceDaily. ScienceDaily, 29 July 2008. <www.sciencedaily.com/releases/2008/07/080728192946.htm>.
University of Tennessee at Knoxville. (2008, July 29). Unexpected Key To Flowering Plants' Diversity. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2008/07/080728192946.htm
University of Tennessee at Knoxville. "Unexpected Key To Flowering Plants' Diversity." ScienceDaily. www.sciencedaily.com/releases/2008/07/080728192946.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Monarch Butterflies Descend Upon Mexican Forest During Annual Migration

Reuters - Light News Video Online (Dec. 19, 2014) Millions of monarch butterflies begin to descend onto Mexico as part of their annual migration south. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
The Best Protein-Filled Foods to Energize You for the New Year

The Best Protein-Filled Foods to Energize You for the New Year

Buzz60 (Dec. 19, 2014) The new year is coming and nothing will energize you more for 2015 than protein-filled foods. Fitness and nutrition expert John Basedow (@JohnBasedow) gives his favorite high protein foods that will help you build muscle, lose fat and have endless energy. Video provided by Buzz60
Powered by NewsLook.com
Birds Might Be Better Meteorologists Than Us

Birds Might Be Better Meteorologists Than Us

Newsy (Dec. 19, 2014) A new study suggests a certain type of bird was able to sense a tornado outbreak that moved through the U.S. a day before it hit. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins