Featured Research

from universities, journals, and other organizations

Large Area Transistors Get Helping Hand From Quantum Effects

Date:
August 11, 2008
Source:
University of Surrey
Summary:
Researchers report that nano-designed transistors for the large area display and sensor application field benefit hugely from quantum size effects. The unexpected superior switching performance (low leakage current, and steep sub-threshold slope) shown experimentally and analysed theoretically, demonstrate hitherto unexplored routes for improvements for transistors based on disordered silicon films. By making the conduction channel in these disordered transistors very thin, the team has shown this technology will enable the design of low power memory for large area electronics based on a low-cost industry standard material processing route.

Researchers from the Hitachi Central Research Laboratory, Japan, and the Advanced Technology Institute of the University of Surrey today report that nano-designed transistors for the large area display and sensor application field benefit hugely from quantum size effects.

Related Articles


The unexpected superior switching performance (low leakage current, and steep sub-threshold slope) shown experimentally and analysed theoretically, demonstrate hitherto unexplored routes for improvements for transistors based on disordered silicon films. By making the conduction channel in these disordered transistors very thin, the team has shown this technology will enable the design of low power memory for large area electronics based on a low-cost industry standard material processing route.

In the most recent investigations, the current of the devices, is found to be percolation governed when the channel is thinner than 3.0 nm due to strong quantum confinement induced potential variations over the active channel region. It is shown that the device channel width must be at least 0.3 m to avoid percolative “pinch off” for 0.5 m channel length devices. Theoretical analysis performed on the devices agrees well with the experimental data and provides important guidelines to model and optimize the devices for circuit design.

Dr Xiaojun Guo, one of the lead investigators, comments: “The nano-structure silicon thin-film transistors are very promising for design of low power electronics. However, carrier transport in such devices is very complicated, and results in electrical characteristics that may not be described by conventional field effect transistor (FET) models. This work reveals the key physical properties of the devices, which will help to further optimize and model the devices for circuit design”.

Professor Ravi Silva, Director of the Advanced Technology Institute adds: “This study is a prime example of how leading silicon technologies entrenched in industry can find alternative routes to improve on performance in device characteristics by clever design. The role that funding organizations such as EPSRC play in supporting this type of applied research is invaluable to the community and most importantly to industry”.


Story Source:

The above story is based on materials provided by University of Surrey. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guo et al. Current percolation in ultrathin channel nanocrystalline silicon transistors. Applied Physics Letters, 2008; 93 (4): 042105 DOI: 10.1063/1.2965807

Cite This Page:

University of Surrey. "Large Area Transistors Get Helping Hand From Quantum Effects." ScienceDaily. ScienceDaily, 11 August 2008. <www.sciencedaily.com/releases/2008/08/080808091557.htm>.
University of Surrey. (2008, August 11). Large Area Transistors Get Helping Hand From Quantum Effects. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2008/08/080808091557.htm
University of Surrey. "Large Area Transistors Get Helping Hand From Quantum Effects." ScienceDaily. www.sciencedaily.com/releases/2008/08/080808091557.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins