Featured Research

from universities, journals, and other organizations

How Flesh-eating Bacteria Attack The Body's Immune System

Date:
August 14, 2008
Source:
University of California - San Diego
Summary:
"Flesh-eating" or "Strep" bacteria are able to survive and spread in the body by degrading a key immune defense molecule. The finding could aid in development of new treatments for serious infections in human patients.

Strep bacteria interacting with human cells.
Credit: Courtesy of UC San Diego School of Medicine

"Flesh-eating" or "Strep" bacteria are able to survive and spread in the body by degrading a key immune defense molecule, according to researchers at the University of California, San Diego, School of Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences.

The finding, which could aid in development of new treatments for serious infections in human patients, will be reported in the August 14 issue of the journal Cell Host & Microbe.

Led by senior author Victor Nizet, M.D., UC San Diego professor of pediatrics and pharmacy and an infectious diseases physician at Rady Children's Hospital, San Diego, the researchers showed that a protease known as SpyCEP (Strep. pyogenes cell envelope protease) – produced in large amounts by the most dangerous strains of Strep –inactivates an immune system molecule that controls the body's white blood cells ability to fight bacteria. Without signals from this molecule, white blood cells become slower and weaker, and infections can spread out of control.

"These findings may suggest a new approach to treating serious Strep infections by supporting our body's natural defense system," said Nizet.

The research focuses on the major human pathogen group A Streptococcus. Among the most important of all bacterial pathogens, Strep is responsible for a wide range of diseases – from simple strep throat to life-threatening conditions such as necrotizing fasciitis ("flesh-eating disease") and toxic shock syndrome.

The UC San Diego investigators examined the interaction of Strep bacteria with neutrophils, specialized white blood cells that play a front-line role in humans' immune defense against pathogenic microbes. Previous research had shown that Strep bacteria change their pattern of gene expression dramatically during the course of infection, including a massive increase in production of SpyCEP, which has the unique ability to inactivate an immune defense molecule known as interleukin-8 (IL-8). IL-8 is produced at sites of infection and serves as a signal for neutrophils to migrate out of the bloodstream and into the tissues to clear the infection.

The UC San Diego team used a molecular genetic approach for their studies, knocking out the gene encoding the SpyCEP from a pathogenic strep strain that was originally isolated from a patient suffering from necrotizing fasciitis.

"Lacking this single protease, the mutant Strep strain was easily killed by human neutrophils," said lead author Annelies Zinkernagel, M.D., a postgraduate researcher in the UCSD department of pediatrics. "In addition, the mutant Strep bacteria no longer produced a spreading infection when injected into the skin of experimental mice."

The critical role of the Strep protease was confirmed by cloning the corresponding gene into a normally non-pathogenic bacterial strain, which then became resistant to neutrophil killing. More detailed analysis demonstrated that by inactivating IL-8, SpyCEP blocked neutrophil migration across blood vessels as well as neutrophil production of "extracellular traps" used to ensnare bacteria.

The immune-blocking effects of SpyCEP produced by Strep were strong enough to allow other bacterial species to survive at the site of infection, which may contribute to mixed infections that require complex antibiotic regimens. The researchers also showed that a pathogen of fish, Streptococcus iniae, produces its own version of SpyCEP that may contribute to recent reports of severe skin infections caused by this bacterium in fish handlers.

Nizet explained that the researchers' findings could lead to novel treatments for Strep-related diseases. "In addition to attempting to kill the bacteria directly with standard antibiotics, new treatment strategies could be targeted to inhibit the Strep protease and thereby disarm the pathogen, making it susceptible to clearance by our normal immune defenses," he said.

This study was financed by grants from the National Institutes of Health and the Swiss National Science Foundation. Co-authors contributing to the study were Anjuli Timmer, Ph.D., Jeffrey Locke, Ph.D., and John Buchanan, Ph.D., of the UCSD Department of Pediatrics; Morgan Pence, UCSD graduate student in biomedical sciences; Claire Turner and Shiranee Sriskandan, Ph.D., of Imperial College, London; and Inbal Mishalian and Emmanuel Hanski, Ph.D., of the Hebrew University in Jerusalem.


Story Source:

The above story is based on materials provided by University of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University of California - San Diego. "How Flesh-eating Bacteria Attack The Body's Immune System." ScienceDaily. ScienceDaily, 14 August 2008. <www.sciencedaily.com/releases/2008/08/080813120743.htm>.
University of California - San Diego. (2008, August 14). How Flesh-eating Bacteria Attack The Body's Immune System. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2008/08/080813120743.htm
University of California - San Diego. "How Flesh-eating Bacteria Attack The Body's Immune System." ScienceDaily. www.sciencedaily.com/releases/2008/08/080813120743.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins