Featured Research

from universities, journals, and other organizations

A Better Way To Make Hydrogen From Biofuels

Date:
August 21, 2008
Source:
Ohio State University
Summary:
Researchers here have found a way to convert ethanol and other biofuels into hydrogen very efficiently. A new catalyst makes hydrogen from ethanol with 90 percent yield, at a workable temperature, and using inexpensive ingredients. The new catalyst is much less expensive than others being developed around the world, because it does not contain precious metals, such as platinum or rhodium.

Researchers here have found a way to convert ethanol and other biofuels into hydrogen very efficiently.

A new catalyst makes hydrogen from ethanol with 90 percent yield, at a workable temperature, and using inexpensive ingredients.

Umit Ozkan, professor of chemical and biomolecular engineering at Ohio State University, said that the new catalyst is much less expensive than others being developed around the world, because it does not contain precious metals, such as platinum or rhodium.

"Rhodium is used most often for this kind of catalyst, and it costs around $9,000 an ounce," Ozkan said. "Our catalyst costs around $9 a kilogram."

She and her co-workers presented the research Wednesday, August 20 at the American Chemical Society meeting in Philadelphia.

The Ohio State catalyst could help make the use of hydrogen-powered cars more practical in the future, she said.

"There are many practical issues that need to be resolved before we can use hydrogen as fuel -- how to make it, how to transport it, how to create the infrastructure for people to fill their cars with it," Ozkan explained.

"Our research lends itself to what's called a 'distributed production' strategy. Instead of making hydrogen from biofuel at a centralized facility and transporting it to gas stations, we could use our catalyst inside reactors that are actually located at the gas stations. So we wouldn't have to transport or store the hydrogen -- we could store the biofuel, and make hydrogen on the spot."

The catalyst is inexpensive to make and to use compared to others under investigation worldwide. Those others are often made from precious metals, or only work at very high temperatures.

"Precious metals have high catalytic activity and -- in most cases -- high stability, but they're also very expensive. So our goal from the outset was to come up with a precious-metal-free catalyst, one that was based on metals that are readily available and inexpensive, but still highly active and stable. So that sets us apart from most of the other groups in the world."

The new dark gray powder is made from tiny granules of cerium oxide -- a common ingredient in ceramics -- and calcium, covered with even smaller particles of cobalt. It produces hydrogen with 90 percent efficiency at 660 degrees Fahrenheit (around 350 degrees Celsius) -- a low temperature by industrial standards.

"Whenever a process works at a lower temperature, that brings energy savings and cost savings," Ozkan said. “Also, if the catalyst is highly active and can achieve high hydrogen yields, we don’t need as much of it. That will bring down the size of the reactor, and its cost”.

The process starts with a liquid biofuel such as ethanol, which is heated and pumped into a reactor, where the catalyst spurs a series of chemical reactions that ultimately convert the liquid to a hydrogen-rich gas.

One of the biggest challenges the researchers faced was how to prevent "coking" -- the formation of carbon fragments on the surface of the catalyst. The combination of metals -- cerium oxide and calcium -- solved that problem, because it promoted the movement of oxygen ions inside the catalyst. When exposed to enough oxygen, the carbon, like the biofuel, is converted into a gas and gets oxidized; it becomes carbon dioxide.

At the end of the process, waste gases such as carbon monoxide, carbon dioxide and methane are removed, and the hydrogen is purified. To make the process more energy-efficient, heat exchangers capture waste heat and put that energy back into the reactor. Methane recovered in the process can be used to supply part of the energy.

Though this work was based on converting ethanol, Ozkan's team is now studying how to use the same catalyst with other liquid biofuels. Her coauthors on this presentation included Ohio State doctoral students Hua Song and Lingzhi Zhang.

This research was funded by the Department of Energy.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "A Better Way To Make Hydrogen From Biofuels." ScienceDaily. ScienceDaily, 21 August 2008. <www.sciencedaily.com/releases/2008/08/080820163111.htm>.
Ohio State University. (2008, August 21). A Better Way To Make Hydrogen From Biofuels. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2008/08/080820163111.htm
Ohio State University. "A Better Way To Make Hydrogen From Biofuels." ScienceDaily. www.sciencedaily.com/releases/2008/08/080820163111.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins