Featured Research

from universities, journals, and other organizations

'Armored' Fish Study Helps Strengthen Darwin's Natural Selection Theory

Date:
September 1, 2008
Source:
University of British Columbia
Summary:
Shedding some genetically induced excess baggage may have helped a tiny fish thrive in freshwater and outsize its marine ancestors, according to a new study in Science.

Lateral plate morphs in marine stickleback. Complete morph (top), partial morph (middle), and low morph (bottom). These fish were stained to highlight bones.
Credit: Courtesy of Rowan Barrett, UBC

Shedding some genetically induced excess baggage may have helped a tiny fish thrive in freshwater and outsize its marine ancestors, according to a UBC study published today in Science Express.

Related Articles


Measuring three to 10 centimetres long, stickleback fish originated in the ocean but began populating freshwater lakes and streams following the last ice age. Over the past 20,000 years – a relatively short time span in evolutionary terms – freshwater sticklebacks have lost their bony lateral plates, or “armour,” in these new environments.

“Scientists have identified a mutant form of a gene, or allele, that prohibits the growth of armour,” says UBC Zoology PhD candidate Rowan Barrett. Found in fewer than one per cent of marine sticklebacks, this allele is very common in freshwater populations.

Barrett and co-authors UBC post-doctoral fellow Sean Rogers and Prof. Dolph Schluter set out to investigate whether the armour gene may have helped sticklebacks “invade” freshwater environments. They relocated 200 marine sticklebacks with the rare armour reduction allele to freshwater experimental ponds.

“By documenting the physical traits and genetic makeup of the offspring produced by these marine sticklebacks in freshwater, we were able to track how natural selection operates on this gene,” says Rogers.

“We found a significant increase in the frequency of this allele in their offspring, evidence that natural selection favours reduced armour in freshwater,” says Barrett.

Barrett and Rogers also found that offspring carrying the allele are significantly larger in size. “It leads us to believe that the genetic expression is also tied to increased growth rate,” says Barrett.

“If the fish aren’t expending resources growing bones – which may be significantly more difficult in freshwater due to its lack of ions – they can devote more energy to increasing biomass,” says Barrett. “This in turn allows them to breed earlier and improves over-winter survival rate.”

Celebrating its 150th anniversary this week, Darwin’s first publication of his natural selection theory proposed that challenging environments would lead to a struggle for existence, or “survival of the fittest.” Since then, scientists have advanced the theory by contributing an understanding of how genes affect evolution.

“This study provides further evidence for Darwin’s theory of natural selection by showing that environmental conditions can directly impact genes controlling physical traits that affect the survival of species,” says Barrett.


Story Source:

The above story is based on materials provided by University of British Columbia. Note: Materials may be edited for content and length.


Cite This Page:

University of British Columbia. "'Armored' Fish Study Helps Strengthen Darwin's Natural Selection Theory." ScienceDaily. ScienceDaily, 1 September 2008. <www.sciencedaily.com/releases/2008/08/080828162604.htm>.
University of British Columbia. (2008, September 1). 'Armored' Fish Study Helps Strengthen Darwin's Natural Selection Theory. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2008/08/080828162604.htm
University of British Columbia. "'Armored' Fish Study Helps Strengthen Darwin's Natural Selection Theory." ScienceDaily. www.sciencedaily.com/releases/2008/08/080828162604.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Domestication Might've Been Bad For Horses

Domestication Might've Been Bad For Horses

Newsy (Dec. 16, 2014) A group of scientists looked at the genetics behind the domestication of the horse and showed how human manipulation changed horses' DNA. Video provided by Newsy
Powered by NewsLook.com
Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

AFP (Dec. 16, 2014) A collection of rare manuscripts by composers Mozart, Beethoven, Shubert and Bizet are due to go on sale at auction on December 17. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Old Ship Records to Shed Light on Arctic Ice Loss

Old Ship Records to Shed Light on Arctic Ice Loss

Reuters - Innovations Video Online (Dec. 15, 2014) Researchers are looking to the past to gain a clearer picture of what the future holds for ice in the Arctic. A project to analyse and digitize ship logs dating back to the 1850's aims to lengthen the timeline of recorded ice data. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins