Featured Research

from universities, journals, and other organizations

Grain Moisture Measurements May Divert Mold, Insect Infestation

Date:
September 2, 2008
Source:
USDA - Agricultural Research Service
Summary:
Grain storage bins are routinely monitored for temperature to control insect and mold problems. Now an scientists have preliminary research findings showing that monitoring carbon dioxide -- along with humidity and temperature -- also may help detect problems more effectively.

Grain storage bins are routinely monitored for temperature to control insect and mold problems. Now an Agricultural Research Service (ARS) scientist and his colleagues at Kansas State University (KSU) have preliminary research findings showing that monitoring carbon dioxide--along with humidity and temperature--also may help detect problems more effectively.

Related Articles


Grain moisture content and temperature are the primary factors affecting grain deterioration in storage. If these factors are not properly monitored and controlled, grain quality can deteriorate quickly due to mold growth and insect infestation.

ARS engineer Paul Armstrong at the agency's Grain and Marketing and Production Research Center in Manhattan, Kan., and Haidee Gonzales and Ronaldo Maghirang at KSU monitored a simulated grain storage bin during aeration to determine if high-moisture grain, or adverse storage conditions, in the bin top could be detected using sensors to measure relative humidity, temperature and carbon dioxide levels.

Relative humidity and temperature can be used to estimate grain moisture, while carbon dioxide levels indicate the amount of respiration due, primarily, to molds. Current technology allows relative humidity and temperature sensors to be placed at multiple points within the grain mass. Carbon dioxide sensing is more feasible at an aeration duct.

In the study, sensors were placed at different depths in the bin. High-moisture grain-- comprising about 11 percent of the volume--was placed at the top of the bin and produced high amounts of carbon dioxide, which in most cases was easily detectable during aeration.

Lowering grain temperature with aeration diminished the amount of carbon dioxide produced, making it more difficult to detect unless the carbon dioxide sensor was located very close to the wet grain.

Relative humidity and temperature sensing gave good estimates of grain moisture for all conditions, but under some grain conditions, high carbon dioxide levels persisted for grain considered to be at safe moisture and temperature conditions. Combining relative humidity, temperature and carbon dioxide measurements gave reasonably accurate measurements of grain moisture content as well as overall storage conditions.


Story Source:

The above story is based on materials provided by USDA - Agricultural Research Service. Note: Materials may be edited for content and length.


Cite This Page:

USDA - Agricultural Research Service. "Grain Moisture Measurements May Divert Mold, Insect Infestation." ScienceDaily. ScienceDaily, 2 September 2008. <www.sciencedaily.com/releases/2008/08/080830160741.htm>.
USDA - Agricultural Research Service. (2008, September 2). Grain Moisture Measurements May Divert Mold, Insect Infestation. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2008/08/080830160741.htm
USDA - Agricultural Research Service. "Grain Moisture Measurements May Divert Mold, Insect Infestation." ScienceDaily. www.sciencedaily.com/releases/2008/08/080830160741.htm (accessed October 24, 2014).

Share This



More Earth & Climate News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins