Featured Research

from universities, journals, and other organizations

Structure Of Key Epigenetics Component Identified

Date:
September 8, 2008
Source:
Wellcome Trust
Summary:
Scientists from the Structural Genomics Consortium have determined the 3-D structure of a key protein component involved in enabling "epigenetic code" to be copied accurately from cell to cell. The research not only represents an advance for the epigenetics field, but also an advance for how the science was done.

Researchers have determined the 3D structure of a key protein component involved in enabling "epigenetic code" to be copied accurately from cell to cell.
Credit: Image courtesy of Wellcome Trust

Scientists from the Structural Genomics Consortium (SGC) have determined the 3D structure of a key protein component involved in enabling "epigenetic code" to be copied accurately from cell to cell.

Epigenetic code is a series of chemical switches that is added onto our DNA in order to ensure that the cells in our body can form different types of tissue, for example liver and skin, despite having identical DNA genetic code.

When DNA is copied from cell to cell, it is essential that the epigenetic code is also copied accurately. If not, a liver cell may divide into another type of cell, such as a nerve or eye cell. A breakdown in this system might also mean that a gene for cell growth is accidentally switched on, for example, leading to unregulated cell growth and the development of tumours.

Research published in 2007 showed the importance of the nuclear protein UHRF1 in ensuring that the epigenetic code is accurately copied. Epigenetic switches are created by the addition of a chemical group (methyl) to DNA in a process known as methylation, facilitated by the enzyme DNMT1. The researchers believe that when this code is copied, UHRF1 ensures the accuracy of the process, like a proof-reader checks a typeset article before printing.

The key element of UHRF1 involved in this "proofreading" process is known as the Set and Ring Associated (SRA) domain, but the exact mechanisms by which the SRA domain accomplishes this task were unclear. Today, in three different articles, the journal Nature publishes the structure of the key element of UHRF1 that facilitates this process.

"Given the increasing focus on epigenetics as a mechanism behind cancer, elucidating the structure of UHRF1 may provide crucial insights into what goes wrong," says Professor Sirano Dhe-Paganon from the Structural Genomics Consortium laboratories at the University of Toronto, Canada.

The structural papers not only represent an advance for the epigenetics field, but also an advance for how the science was done. The concurrent publication of the three papers highlights the competitive nature of this field, but in fact these papers were made possible because the SGC, in keeping with its policy of making its data freely and immediately available, made the underlying information available in the Protein Data Bank late in 2007. The availability of this information allowed the other groups to make more rapid progress in their own work.

"By releasing the structural information into the public databases as soon as it was available, we have ensured that other research groups could make immediate and maximum benefit from the shared knowledge," says Professor Dhe-Paganon.

Professor Masahiro Shirakawa from Kyoto University, Japan, openly acknowledges that the SGC data was crucial to his team's paper, which also appears in today's edition of Nature.

"We would like to express our gratitude to the researchers at the SGC for making their available on net," says Professor Shirakawa. "Structural biology is a complex, but very important field, with the potential to drive forward important research in many areas. The information provided by the SGC significantly speeded up our own work."

The SGC's "open source" policy contrasts with the accepted practice in the structural biology field, which is to make the underlying data available only after the work appears in print. However, Professor Al Edwards, Director of the SGC, believes strongly that data such as the 3D structure of proteins should be made freely available as soon as they are discovered.

"From the outset, it's been important to us to release our structural data immediately," says Professor Edwards. "This is contrary to the way many scientists work, but we believe it is crucial for facilitating scientific and medical progress, and our policy has not inhibited our ability to publish our work in the top journals. All the protein structures studied by the SGC have medical relevance and making them freely available ensures that scientists are able to use them to make progress in our understanding of disease and the development of new drugs."


Story Source:

The above story is based on materials provided by Wellcome Trust. Note: Materials may be edited for content and length.


Cite This Page:

Wellcome Trust. "Structure Of Key Epigenetics Component Identified." ScienceDaily. ScienceDaily, 8 September 2008. <www.sciencedaily.com/releases/2008/09/080903134159.htm>.
Wellcome Trust. (2008, September 8). Structure Of Key Epigenetics Component Identified. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/09/080903134159.htm
Wellcome Trust. "Structure Of Key Epigenetics Component Identified." ScienceDaily. www.sciencedaily.com/releases/2008/09/080903134159.htm (accessed April 18, 2014).

Share This



More Plants & Animals News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Great British Farmland Boom

The Great British Farmland Boom

Reuters - Business Video Online (Apr. 17, 2014) Britain's troubled Co-operative Group is preparing to cash in on nearly 18,000 acres of farmland in one of the biggest UK land sales in decades. As Ivor Bennett reports, the market timing couldn't be better, with farmland prices soaring over 270 percent in the last 10 years. Video provided by Reuters
Powered by NewsLook.com
Flamingo Frenzy Ahead of Zoo Construction

Flamingo Frenzy Ahead of Zoo Construction

AP (Apr. 17, 2014) With plenty of honking, flapping, and fluttering, more than three dozen Caribbean flamingos at Zoo Miami were rounded up today as the iconic exhibit was closed for renovations. (April 17) Video provided by AP
Powered by NewsLook.com
Change of Diet Helps Crocodile Business

Change of Diet Helps Crocodile Business

Reuters - Business Video Online (Apr. 16, 2014) Crocodile farming has been a challenge in Zimbabwe in recent years do the economic collapse and the financial crisis. But as Ciara Sutton reports one of Europe's biggest suppliers of skins to the luxury market has come up with an unusual survival strategy - vegetarian food. Video provided by Reuters
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins