Featured Research

from universities, journals, and other organizations

High Blood Pressure Takes Big Toll On Small Filtering Units Of The Kidney

Date:
September 24, 2008
Source:
Medical College of Georgia
Summary:
Take a kidney out of the body and it still knows how to filter toxins from the blood. But all bets are off in the face of high blood pressure. "How does the kidney know how to do it and why does it break in hypertension?" says Dr. Edward W. Inscho, physiologist in the Medical College of Georgia Schools of Medicine and Graduate Studies.

Take a kidney out of the body and it still knows how to filter toxins from the blood. But all bets are off in the face of high blood pressure.

Related Articles


"How does the kidney know how to do it and why does it break in hypertension?" says Dr. Edward W. Inscho, physiologist in the Medical College of Georgia Schools of Medicine and Graduate Studies.

The kidneys filter about 200 quarts of plasma daily, eliminating about two quarts of waste product and extra water as urine, according to the National Institute of Diabetes and Digestive and Kidney Diseases. But the complete physiology remains a mystery.

He challenged colleagues to fill in important blanks in how this process works normally and how to make it work better in disease during the Sept. 19 Lewis K. Dahl Memorial Lecture at the 62nd High Blood Pressure Research Conference and Workshop in Atlanta.

One thing is clear: Hypertension takes a serious toll on the kidneys and damaged kidneys worsen hypertension. Dr. Inscho believes the kidneys' million hard-working filters, or glomeruli, are direct victims of high pressure. His research focuses on the minute arteries, or arterioles, that feed blood into each of them. These afferent arterioles are responsible for keeping blood pressure at a comfortable 60 mmHg inside glomeruli. At a healthy blood pressure of 120/80 mmHg, blood enters the artery at a mean pressure of 100 mmHg, but higher pressures mean the arterioles must work even harder to reach the 60 mmHg target. They seem up to the task at least initially, contracting to make it harder for blood to pass and reducing pressure in the process. "We want to know how it does that," Dr. Inscho says as he watches the near instantaneous contraction.

He thinks he may at least know the messenger. The first reaction to high pressure actually is for the small vessel to stretch. That stretch prompts smooth muscle cells on the vessel wall to release ATP, a common molecule known as an energy source but also gaining acceptance as an extracellular messenger, he theorizes. "It's an action-reaction kind of event."

When he puts ATP on the vessel it rapidly constricts; when he blocks the ATP receptor it won't. Unfortunately ATP works best in the face of normal pressures: constricting pressure about 25 percent as opposed to 2-3 percent when it's high. Still there are plenty of questions. Whether ATP is really released by the initial stretching is a critical one, he says. Whether ATP really comes from smooth muscle cells is another.

University of Southern California researcher Dr. Janos Peti-Peterdi thinks high pressures tugging the tethers connecting smooth muscle cells to others in the blood vessel wall may really be what releases ATP, a theory Dr. Inscho presented during the Sept. 19 meeting. It may be that hypertension changes the attachment of those tethers so they don't respond and the blood vessel can’t either.

"We are trying to figure out how all this fits together," says Dr. Inscho. Figuring out the critical steps of this "amazingly elegant, amazingly precise and very complicated" process will lead to better understanding of what gets corrupted by diseases such as hypertension and diabetes and maybe how to stop kidney destruction.

As scientists are finding with many diseases, Dr. Inscho says inflammation likely plays a big role. "We know we can make these animals hypertensive, treat them with anti-inflammatories and prevent this whole process from occurring," he says of glomeruli destruction. "I think that's pretty exciting, but we don’t know exactly how we are doing that." Blood pressure is not affected, just the negative impact on the kidneys. Inflammation, he notes, is likely well-intended but ultimately ends up thickening blood vessel walls and hampering flexibility.

The Lewis K. Dahl Memorial Lecture was established in 1988 by the Council for High Blood Pressure Research to honor Dr. Dahl's pioneering work in the relationship between salt, the kidneys and hypertension. His contributions include development of the Dahl salt sensitive rat, a genetically engineered model of hypertension.

The Sept. 17-20 hypertension conference in Atlanta was sponsored by the Council for High Blood Pressure Research and the Council on Kidney in Cardiovascular Disease.


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "High Blood Pressure Takes Big Toll On Small Filtering Units Of The Kidney." ScienceDaily. ScienceDaily, 24 September 2008. <www.sciencedaily.com/releases/2008/09/080919142600.htm>.
Medical College of Georgia. (2008, September 24). High Blood Pressure Takes Big Toll On Small Filtering Units Of The Kidney. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2008/09/080919142600.htm
Medical College of Georgia. "High Blood Pressure Takes Big Toll On Small Filtering Units Of The Kidney." ScienceDaily. www.sciencedaily.com/releases/2008/09/080919142600.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins