Featured Research

from universities, journals, and other organizations

Deactivating Radioactive Waste In Hundreds, Not Millions, Of Years

Date:
September 23, 2008
Source:
Vienna University of Technology
Summary:
It may be possible to dramatically reduce the radioactive waste isolation time -- from several million years to as little as 300 - 500 years. In order to decrease the isolation time for radioactive waste, first of all, the actinides - elements whose nuclei are heavier than uranium (i.e. curium, actinium) - must be removed from the waste by processing (transmutation) into short-lived nuclei.

Labeled equipment in n_TOF facility. The n_Tof facility is operative at CERN (Genf), and is suitable for measuring the reactions of radioactive materials when bombarded with neutrons.
Credit: Image courtesy of Vienna University of Technology

It may be possible to dramatically reduce the radioactive waste isolation time -- from several million years to as little as 300 - 500 years. In order to decrease the isolation time for radioactive waste, first of all, the actinides - elements whose nuclei are heavier than uranium (i.e. curium, actinium) - must be removed from the waste by processing (transmutation) into short-lived nuclei.

“The core concept of transmutation – which was formulated as early as mid 20th century – consists of irradiating the actinides by fast neutrons. The highly stimulated nuclei that are generated this way suffer a fission, which leads to relatively short-lived nuclei, which in turn rapidly disintegrate into stable isotopes. Then, they cease to be radioactive,” explains Professor Helmut Leeb from the Atomic Institute of the Austrian Universities. Thus, the required radioactive waste isolation time of several millions years could be decreased to 300 and up to 500 years. The technological progress made in the last decades has made the transmutation possible at the industrial level.

An efficient transmutation of radioactive waste requires the development of new facilities. In addition to specially designed fast reactors, the Accelerator-Driven Systems (ADS) present a new potential concept. This is an undercritical reactor, which cannot sustain any chain reaction. The neutrons necessary for stationary operations are supplied by a proton accelerator with a spallation target located in the reactor core.

“During the spallation, the atomic nuclei of the target (mainly lead) are broken with high-energy protons, while a large number of neutrons are normally released, neutrons which are necessary for the stationary operation of the reactor. If the accelerator is turned off, the chain reaction ceases,” added Leeb. Worldwide studies are based on the assumption that at least two decades will be necessary to transfer this concept to the industrial level, a concept which is fully understood at the scientific level.

An essential prerequisite for this development is a thorough knowledge of the neutrons’ interaction and reactions with other materials as available to date. Therefore, in the year 2000, the n_Tof facility became operative at CERN (Genf), which is a unique facility in the world, suitable especially for measuring the reactions of radioactive materials when bombarded with neutrons. Between 2002 and 2005, a large number of radiative captures and fission reactions, previously insufficiently known, were measured as part of an EU project, in which nuclear physicists from TU Vienna were considerably involved.

After the conditional pause occasioned by the construction of the Large Hadron Collider at CERN, now at the end of September 2008, the consortium will start the operations at the upgraded n_TOF facility with a new target. The first series of experiments are neutron radiative captures on iron and nickel, which are analyzed by Viennese nuclear physicists (from TU Vienna and the University of Vienna). In addition to accurate reaction data for transmutation facilities, the results are also of interest for astrophysics.

An alternative nuclear fuel, which leads to a reduced incidence of radioactive waste, is the “thorium-uranium cycle.” Leeb: “Thorium is a potential nuclear fuel, which may be incubated into a light uranium isotope, whose fission generates basically no actinide. Furthermore, thorium can be found approximately five times more often than uranium. However, special reactors must be still developed for this, reactors that would be appropriate for the reaction pattern and for the somewhat harder gamma radiation. India is one of the countries that already host experiments with thorium in reactor cores."


Story Source:

The above story is based on materials provided by Vienna University of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Vienna University of Technology. "Deactivating Radioactive Waste In Hundreds, Not Millions, Of Years." ScienceDaily. ScienceDaily, 23 September 2008. <www.sciencedaily.com/releases/2008/09/080922100148.htm>.
Vienna University of Technology. (2008, September 23). Deactivating Radioactive Waste In Hundreds, Not Millions, Of Years. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2008/09/080922100148.htm
Vienna University of Technology. "Deactivating Radioactive Waste In Hundreds, Not Millions, Of Years." ScienceDaily. www.sciencedaily.com/releases/2008/09/080922100148.htm (accessed September 19, 2014).

Share This



More Earth & Climate News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Wildfires in CA Burn Forest Asunder

Raw: Wildfires in CA Burn Forest Asunder

AP (Sep. 18, 2014) An out-of-control Northern California wildfire has nearly 2,800 people from their homes as it continues to grow, authorities said Thursday. Authorities said a man has been arrested on suspicion of arson for starting the fire on Saturday. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Elephant Undergoes Surgery in Tbilisi Zoo

Raw: Elephant Undergoes Surgery in Tbilisi Zoo

AP (Sep. 18, 2014) Grand the elephant has successfully undergone surgery to remove a portion of infected tusk at Tbilisi Zoo in Georgia. British veterinary surgeons used an electric drill to extract the infected piece. (Sept. 18) Video provided by AP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins