Featured Research

from universities, journals, and other organizations

Chernobyl Fallout? Plutonium Found In Swedish Soil

Date:
October 2, 2008
Source:
Case Western Reserve University
Summary:
More than 20 years later, researchers from Case Western Reserve University traveled to Sweden and Poland to gain insight into the downward migration of Chernobyl-derived radionuclides in the soil. Among the team's findings was the fact that much more plutonium was found in the Swedish soil at a depth that corresponded with the nuclear explosion than that of Poland.

Small red cottage by a green summer meadow in Sweden. Researchers found much more plutonium in Swedish soil at a depth that corresponded with the Chernobyl nuclear explosion than that of Poland.
Credit: iStockphoto/Marcus Lindstrφm

When a reactor in the Chernobyl nuclear power plant exploded in 1986 in what was then the Soviet republic of Ukraine, radioactive elements were released in the air and dispersed over the Soviet Union, Europe and even eastern portions of North America.

More than 20 years later, researchers from Case Western Reserve University traveled to Sweden and Poland to gain insight into the downward migration of Chernobyl-derived radionuclides in the soil. Among the team's findings was the fact that much more plutonium was found in the Swedish soil at a depth that corresponded with the nuclear explosion than that of Poland.

Radionuclides occur in soil both from natural processes and as fallout from nuclear testing.

Gerald Matisoff, chair of the department of geological sciences at Case Western Reserve University, Lauren Vitko, field assistant from Case Western Reserve, and others took soil samples in various locations in the two countries, measuring the presence and location of cesium (137Cs), plutonium (239, 240Pu), and lead (210Pbxs).

Matisoff will present his findings on Monday, October 6, at the 2008 Joint Meeting of the Geological Society of America, Soil Science Society of America, American Society of Agronomy, Crop Science Society of America, and Gulf Coast Association of Geological Societies in Houston.

By looking at the magnitude of the radioactive fallout, how fast it moved down into the soil profile and how quickly it eroded and is transported by sediment, Matisoff's research helps shed light on two fronts.

The first is dealing with the public health ramifications, studying such issues as food chain transfer, exposure and cleanup as well as understanding the geologic aftereffects. These issues include measuring erosion rates, how long the radionuclides are retained in the watershed, the source of sediment found in rivers as well as compiling radioactive inventories.

The second is developing an understanding of the differentiation of radioactive elements from a one-time event like Chernobyl and those of fallout created by atmospheric nuclear weapons testing conducted in the 1960s.

Soil samples collected by Matisoff's team reveal insights based on several conditions, such as how the radionuclides were delivered to the soil, whether from a one-time event like the Chernobyl disaster or from atmospheric bomb testing; the half-life of the radionuclides and whether they were absorbed more heavily onto clay particles (such as 137Cs and 7Be) or organic materials (239, 240Pu and 210Pbxs); and the types of soil which may keep the particles at the surface or allow them to permeate to levels below the surface.

As the team examined a range of soil types from the two countries, they found a spike in 239, 240Pu in Sweden's soil at a depth that coincides with the Chernobyl disaster, yet no similar blip in Poland's soil. Meteorological research showed that it rained in Sweden while the radioactive cloud was over that country. Leeched of much of its radionuclides, much less plutonium fell on Poland when the cloud later crossed over its borders.

Matisoff says that his team's findings are preliminary, having raised as many questions as they have answered. His goal is to use this research for even bigger projects and greater, more definitive findings.

Funding for the projects was provided by the National Science Foundation.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Cite This Page:

Case Western Reserve University. "Chernobyl Fallout? Plutonium Found In Swedish Soil." ScienceDaily. ScienceDaily, 2 October 2008. <www.sciencedaily.com/releases/2008/10/081001130000.htm>.
Case Western Reserve University. (2008, October 2). Chernobyl Fallout? Plutonium Found In Swedish Soil. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2008/10/081001130000.htm
Case Western Reserve University. "Chernobyl Fallout? Plutonium Found In Swedish Soil." ScienceDaily. www.sciencedaily.com/releases/2008/10/081001130000.htm (accessed August 21, 2014).

Share This




More Matter & Energy News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com
Researcher Testing on-Field Concussion Scanners

Researcher Testing on-Field Concussion Scanners

AP (Aug. 19, 2014) — Four Texas high school football programs are trying out an experimental system designed to diagnose concussions on the field. The technology is in response to growing concern over head trauma in America's most watched sport. (Aug. 19) Video provided by AP
Powered by NewsLook.com
Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

Green Power Blooms as Japan Unveils 'hydrangea Solar Cell'

AFP (Aug. 19, 2014) — A solar cell that resembles a flower is offering a new take on green energy in Japan, where one scientist is searching for renewables that look good. Duration: 01:29 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins