Featured Research

from universities, journals, and other organizations

Fitness In A Changing World: Genetics And Adaptations Of Alaskan Stickleback Fish

Date:
October 22, 2008
Source:
National Science Foundation
Summary:
The stickleback fish, Gasterosteus aculeatus, is one of the most thoroughly studied organisms in the wild, and has been a particularly useful model for understanding variation in physiology, behavior, life history and morphology caused by different ecological situations in the wild.

Different genes code for two different forms of stickleback fish and result in different fitness.
Credit: Zina Deretsky, National Science Foundation

The stickleback fish, Gasterosteus aculeatus, is one of the most thoroughly studied organisms in the wild, and has been a particularly useful model for understanding variation in physiology, behavior, life history and morphology caused by different ecological situations in the wild.

Related Articles


On biological levels from molecular and genetic to developmental and morphological, and finally ending with the population level, it has proven far more complex than even imagined.

Studies of stickleback have provided us with a much better understanding of how organisms cope with new environmental conditions, first through acclimation over an individual's lifespan, and subsequently through adaptation of population via changes in gene form (allele) frequencies.

Given the rapidly changing global environment, this research not only provides insight into evolutionary processes, but is of practical importance in understanding how organisms will adapt to a changing world.

There are two forms of the stickleback: the oceanic and the freshwater type. The oceanic form lives in the ocean and comes into shallow estuarine or freshwater rivers and streams to breed, and has repeatedly given rise to a freshwater form that lives its entire life isolated in freshwater habitats.

Oceanic stickleback are protected by a complete set of bony lateral plates along the sides and dorsal and pelvic spines on the top and bottom of the fish. These structures help the fish survive attacks by birds and other fish-eating predators. The lateral plates develop first at the front of the fish, near the spines, and then are gradually added towards the tail until the entire side of the stickleback is covered.

Freshwater stickleback almost always evolve the loss of lateral plates, and sometimes the spines, as shown in the figure. This evolutionary change can occur very rapidly, sometimes in only dozens of years. An explanation for the loss of the bony plates is that energy is shunted away from bone formation and toward growth and reproduction instead, especially since the freshwater environment is stressful to the fish. In contrast to the ocean, freshwater lakes (especially in the far north) become iced over, limiting the prey items available to stickleback throughout most of the winter.

Coding for the lateral plates was initially determined to have a relatively simple genetic basis with one gene identified as a major contributor, Ectodysplasin-A (Eda). However subsequent mapping showed that in addition to the region of the genome surrounding Eda, two additional blocks of the same chromosome were also tightly linked to each other and the lateral plate trait. Genetic mapping work on Alaskan stickleback was conducted by William Cresko at the University of Oregon and supported by the National Science Foundation.

Fish develop full lateral plates if they have at least one copy of the Eda complete version of the gene (heterozygous or homozygous for the Eda complete allele). The fish lack the full complement of plates if they are homozygous for the recessive gene--Eda low. From the laboratory mapping results, and the rapid loss of plates observed in nature, biologists hypothesized that selection would always be for the Eda low allele in freshwater.

An experimental test by Barrett et al. has shown surprisingly unexpected results in fitness of the fish. The fish's lifespan is approximately a year. Over the course of a year, researchers sampled a controlled population of stickleback. They found that early in life, fish with Eda low were not as successful.

However, midway through their life, the tables turned and the fish with a copy of Eda low were more successful at surviving. In retrospect, these data might not be so surprising given the results from Cresko on the additional linkage blocks. Selection is likely directly on the Eda alleles when the fish is older, but may be on the other linked genomic blocks when the fish is younger, leading to a correlated change in Eda alleles. A challenge now is to determine what these other genes are, and how they might affect traits and fitness.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "Fitness In A Changing World: Genetics And Adaptations Of Alaskan Stickleback Fish." ScienceDaily. ScienceDaily, 22 October 2008. <www.sciencedaily.com/releases/2008/10/081010100457.htm>.
National Science Foundation. (2008, October 22). Fitness In A Changing World: Genetics And Adaptations Of Alaskan Stickleback Fish. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2008/10/081010100457.htm
National Science Foundation. "Fitness In A Changing World: Genetics And Adaptations Of Alaskan Stickleback Fish." ScienceDaily. www.sciencedaily.com/releases/2008/10/081010100457.htm (accessed October 31, 2014).

Share This



More Plants & Animals News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Watch Baby Goose Survive A 400-Foot Cliff Dive

Watch Baby Goose Survive A 400-Foot Cliff Dive

Buzz60 (Oct. 31, 2014) For its nature series Life Story, the BBC profiled the barnacle goose, whose chicks must make a daredevil 400-foot cliff dive from their nests to find food. Jen Markham has the astonishing video. Video provided by Buzz60
Powered by NewsLook.com
World's Salamanders At Risk From Flesh-Eating Fungus

World's Salamanders At Risk From Flesh-Eating Fungus

Newsy (Oct. 31, 2014) The import of salamanders around the globe is thought to be contributing to the spread of a deadly fungus. Video provided by Newsy
Powered by NewsLook.com
Alcoholic Drinks In The E.U. Could Get Calorie Labels

Alcoholic Drinks In The E.U. Could Get Calorie Labels

Newsy (Oct. 31, 2014) A health group in the United Kingdom has called for mandatory calorie labels on alcoholic beverages in the European Union. Video provided by Newsy
Powered by NewsLook.com
Malaria Threat in Liberia as Fight Against Ebola Rages

Malaria Threat in Liberia as Fight Against Ebola Rages

AFP (Oct. 31, 2014) Focus on treating the Ebola epidemic in Liberia means that treatment for malaria, itself a killer, is hard to come by. MSF are now undertaking the mass distribution of antimalarials in Monrovia. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins