Featured Research

from universities, journals, and other organizations

'Junk' DNA May Have Important Role In Gene Regulation

Date:
October 20, 2008
Source:
University of Iowa
Summary:
For about 15 years, scientists have known that certain "junk" DNA -- repetitive DNA segments previously thought to have no function -- could evolve into exons, which are the building blocks for protein-coding genes in higher organisms like animals and plants. Now, there is evidence that a significant number of exons created from junk DNA seem to play a role in gene regulation. The findings increase understanding of how humans differ from other animals.

For about 15 years, scientists have known that certain "junk" DNA -- repetitive DNA segments previously thought to have no function -- could evolve into exons, which are the building blocks for protein-coding genes in higher organisms like animals and plants. Now, a University of Iowa study has found evidence that a significant number of exons created from junk DNA seem to play a role in gene regulation.

The findings, which increase understanding of how humans differ from other animals, including non-human primates, appear Oct. 17 in the open-access journal PLoS Genetics.

Nearly half of human DNA consists of repetitive DNA, including transposons, which can "transpose" or move around to different positions within the genome. A type of transposon called retrotransposons are transcribed into RNA and then reintegrated into the genomic DNA. The most common form of retrotransposons in the human genome are Alu elements, which have more than one million copies and occupy approximately 10 percent of the human genome.

"Alu elements are a major source of new exons. Because Alu is a primate-specific retrotransposon, creation of new exons from Alu may contribute to unique traits of primates, so we want to better understand this process," said the study's senior author Yi Xing, Ph.D., assistant professor of internal medicine and biomedical engineering, who holds a joint appointment in the University of Iowa Carver College of Medicine and the UI College of Engineering.

To study the impact of Alu-derived exons on human gene expression, the researchers used a high-density exon microarray. The technology has nearly six million probes for monitoring the expression patterns of all human exons. Using data generated by these microarrays, the scientists analyzed 330 Alu-derived exons in 11 human tissues. The team then identified a number of exons with interesting expression and functional characteristics.

"Hundreds of exons in the human genome were created from Alu elements. The whole-genome exon microarray allowed us to quickly identify exons that most likely contribute to the regulation of gene expression and function," said Lan Lin, Ph.D., University of Iowa postdoctoral fellow in internal medicine and the lead author of this study.

Analysis of one human gene, SEPN1, which is known to be involved in a type of muscular dystrophy, along with comparative data from chimpanzee and macaque tissues, suggested that the presence of a muscle-specific Alu-derived exon resulted from a human-specific change that occurred after humans and chimpanzees diverged evolutionarily.

"In this case, this exon is only expressed at a high level in the human muscle but not in any other human or non-human primate tissue, so this implies that the exon plays a functional role in muscle, and this role is human-specific," said Xing, who is also affiliated with University of Iowa Center for Bioinformatics and Computational Biology.

Other University of Iowa researchers on the paper included Shihao Shen, master's student in biostatistics in the UI College of Public Health; Anne Tye, undergraduate in the UI College of Liberal Arts and Sciences and an Iowa Center for Research by Undergraduates Scholar Assistant; Peng Jiang, Ph.D., postdoctoral fellow in internal medicine; and Beverly Davidson, Ph.D., UI professor of internal medicine who holds the Roy J. Carver Biomedical Research Chair in Internal Medicine. James Cai, Ph.D., postdoctoral scholar in biology at Stanford University, also contributed to the paper.


Story Source:

The above story is based on materials provided by University of Iowa. Note: Materials may be edited for content and length.


Cite This Page:

University of Iowa. "'Junk' DNA May Have Important Role In Gene Regulation." ScienceDaily. ScienceDaily, 20 October 2008. <www.sciencedaily.com/releases/2008/10/081017080145.htm>.
University of Iowa. (2008, October 20). 'Junk' DNA May Have Important Role In Gene Regulation. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2008/10/081017080145.htm
University of Iowa. "'Junk' DNA May Have Important Role In Gene Regulation." ScienceDaily. www.sciencedaily.com/releases/2008/10/081017080145.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

California Passes 'yes-Means-Yes' Campus Sexual Assault Bill

Reuters - US Online Video (Aug. 30, 2014) California lawmakers pass a bill requiring universities to adopt "affirmative consent" language in their definitions of consensual sex, part of a nationwide drive to curb sexual assault on campuses. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
New Drug Could Reduce Cardiovascular Deaths

New Drug Could Reduce Cardiovascular Deaths

Newsy (Aug. 30, 2014) The new drug from Novartis could reduce cardiovascular deaths by 20 percent compared to other similar drugs. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins