Featured Research

from universities, journals, and other organizations

'Cheshire Cat' Escape Strategy In Response To Marine Viruses

Date:
October 29, 2008
Source:
CNRS
Summary:
A novel defense strategy displayed in response to marine viruses by some of the most abundant unicellular organisms found in our oceans has recently been demonstrated. The results enable a clearer understanding of the origin of, and reasons for, sexual reproduction in eukaryotes.

Transition from calcifying diploid cells (background) into non-calcifying flagellated haploid cells (foreground) enables escape from attack by viruses. Sex is thus an antiviral strategy in the coccolithophore Emiliania huxleyi.
Credit: Copyright Miguel Frada, Evolution du Plancton et Paleo team

A novel defence strategy displayed in response to marine viruses by some of the most abundant unicellular organisms found in our oceans has recently been demonstrated by researchers in the Laboratoire Adaptation et diversité en milieu marin (CNRS, UPMC) working in collaboration with other European scientists.

Related Articles


These results enable a clearer understanding of the origin of, and reasons for, sexual reproduction in eukaryotes (1).

The researchers studied the impact of marine viruses on Emiliania huxleyi, one of the most abundant unicellular eukaryotes in oceans that significantly influences the carbon cycle and climates.  In their diploid form, i.e. when they contain a pair of chromosomes (2N), Emiliania huxleyi produce mineral scales and form gigantic populations that are visible from space.  But when attacked by marine viruses, they transform into haploid cells which only contain a single chromosome (N).  These new, non-calcifying, highly motile cells are totally invisible to viruses (and undetectable on satellite photos) so that the species can live in peace to await safer times.  

These scientists have called this the "Cheshire Cat" strategy, in homage to Lewis Carroll's novel " Alice in Wonderland". In this book, the crafty and philosophical Cheshire Cat escapes being beheaded on the order of the Red Queen by rendering his body transparent.  In the same way, by changing their form during the haploid phase, eukaryotes can evade biotic pressure and reinvent themselves within their own species.

Our ancestors, unicellular eukaryotes, appeared in oceans some one billion years ago and "invented" sexuality.  These species are characterized by a life cycle where haploid individuals (carrying a single copy of the genome, like gametes(2)) unify to form diploid individuals that will subsequently generate haploid cells once again.  During this eukaryote "double life", humans and other multicellular eukaryotes whose haploid gametes remain imprisoned within a diploid body, tend to be the exception.  Originally, and in most eukaryotes, haploid cells multiply in their environment to form independent populations.  Sexuality has allowed eukaryotes to evade constant attacks by viruses so that they could evolve towards more complex, high-performance organisms, the ecological importance of which is still markedly underestimated.

Notes:

1) Cells where genetic material is preserved within a nucleus

2) Reproductive cells


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Frada et al. From the Cover: The "Cheshire Cat" escape strategy of the coccolithophore Emiliania huxleyi in response to viral infection. Proceedings of the National Academy of Sciences, 2008; 105 (41): 15944 DOI: 10.1073/pnas.0807707105

Cite This Page:

CNRS. "'Cheshire Cat' Escape Strategy In Response To Marine Viruses." ScienceDaily. ScienceDaily, 29 October 2008. <www.sciencedaily.com/releases/2008/10/081026094351.htm>.
CNRS. (2008, October 29). 'Cheshire Cat' Escape Strategy In Response To Marine Viruses. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2008/10/081026094351.htm
CNRS. "'Cheshire Cat' Escape Strategy In Response To Marine Viruses." ScienceDaily. www.sciencedaily.com/releases/2008/10/081026094351.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Anglerfish Rarely Seen In Its Habitat Will Haunt You

Newsy (Nov. 22, 2014) — For the first time Monterey Bay Aquarium recorded a video of the elusive, creepy and rarely seen anglerfish. Video provided by Newsy
Powered by NewsLook.com
Birds Around the World Take Flight

Birds Around the World Take Flight

Reuters - Light News Video Online (Nov. 22, 2014) — An imperial eagle equipped with a camera spreads its wings over London. It's just one of the many birds making headlines in this week's "animal roundup". Jillian Kitchener reports. Video provided by Reuters
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Baby Okapi Born at Houston Zoo

Raw: Baby Okapi Born at Houston Zoo

AP (Nov. 20, 2014) — The Houston Zoo released video of a male baby okapi. Okapis, also known as the "forest giraffe", are native to the Democratic Republic of the Congo in Central Africa. Video is mute from source. (Nov. 20) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins