Featured Research

from universities, journals, and other organizations

Induction Of Pgc-1 Alpha Expression In Huntington's Disease Transgenic Mice Rescues Neuronal Dysfunction And Neurodegeneration

Date:
November 16, 2008
Source:
American Society of Human Genetics
Summary:
Neurodegenerative diseases pose a considerable burden to our aging population. Huntington's disease (HD) is an inherited neurological disorder that affects as many as 40,000 people in the U.S. alone. HD causes degeneration of the brain, which results in involuntary movement disorder, cognitive decline, and ultimately death.

Neurodegenerative diseases pose a considerable burden to our aging population. Huntington's disease (HD) is an inherited neurological disorder that affects as many as 40,000 people in the U.S. alone. HD causes degeneration of the brain, which results in involuntary movement disorder, cognitive decline, and ultimately death.

Studies of HD and other related neurodegenerative disorders, such as Parkinson's disease, have highlighted the importance of mitochondrial function and energy production in the maintenance of normal neural function. However, there is currently no known cure for this fatal disease.

Albert La Spada, M.D., Ph.D., FACMG, Associate Professor and Director of the Center for Neurogenetics and Neurotherapeutics at University of Washington, Seattle, and his research team have been instrumental in establishing a new paradigm for HD neurodegeneration by linking nuclear transcription interference with mitochondrial dysfunction at the level of the transcription co-activator PGC-1a – an important factor that regulates mitochondria.

In their latest work, Dr. LaSpada and his research group sought to determine if PGC-1a can ameliorate any clinical symptoms of HD by performing genetic studies in a mouse model of HD. Their findings indicate that increased PGC-1a action does improve neurological defects in HD mice and results in reduced amounts of protein aggregates – a key pathological feature of most neurodegenerative disorders.

Specifically, the current results indicate that PPARd (a peroxisome proliferator-activated receptor that is positively modulated by PGC1-a) interacts with the huntingtin protein, and altered function of PPARd contributes to HD neurodegeneration. If PPARd is involved in this neurological disease, then tractable therapies to boost PPARd would be immediately available, as two recent lines of investigation make PPARd an attractive therapeutic target: (1) highly selective and powerful pharmacological agonists for PPARd have been developed and are currently being studied in clinical trials in humans; and 2) PPARd mediates pro-survival signaling in response to retinoic acid, a compound that has been used for years to treat human patients with leukemia and brain tumors.

"My colleagues and I are very excited about the surprising results of our most recent research on Huntington's disease, since the findings could ultimately lead to the first potential treatment for this currently fatal disease," LaSpada said. "Furthermore, our findings suggest there are drugs that are already available and currently being used in human patients that could be possible new therapies for Huntington's disease."

Albert R. La Spada, M.D., Ph.D., FACMG, is Director of the Center for Neurogenetics and Neurotherapeutics and Associate Professor of Laboratory Medicine, Medicine (Medical Genetics), Pathology, and Neurology at the University of Washington, Seattle. La Spada's research efforts have uncovered a number of connections between pathways involved in transcription and neuron dysfunction. His current work focuses on investigating the molecular basis of neurodegenerative disease.

This research was presented at the 58th Annual Meeting of The American Society of Human Genetics (ASHG) in Philadelphia, Pennsylvania on November 11-15, 2008.


Story Source:

The above story is based on materials provided by American Society of Human Genetics. Note: Materials may be edited for content and length.


Cite This Page:

American Society of Human Genetics. "Induction Of Pgc-1 Alpha Expression In Huntington's Disease Transgenic Mice Rescues Neuronal Dysfunction And Neurodegeneration." ScienceDaily. ScienceDaily, 16 November 2008. <www.sciencedaily.com/releases/2008/11/081116161835.htm>.
American Society of Human Genetics. (2008, November 16). Induction Of Pgc-1 Alpha Expression In Huntington's Disease Transgenic Mice Rescues Neuronal Dysfunction And Neurodegeneration. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2008/11/081116161835.htm
American Society of Human Genetics. "Induction Of Pgc-1 Alpha Expression In Huntington's Disease Transgenic Mice Rescues Neuronal Dysfunction And Neurodegeneration." ScienceDaily. www.sciencedaily.com/releases/2008/11/081116161835.htm (accessed July 24, 2014).

Share This




More Health & Medicine News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins