Featured Research

from universities, journals, and other organizations

Novel Technique For Fluorescence Tomography Of Tumors In Living Animals

Date:
December 23, 2008
Source:
Helmholtz Zentrum München - German Research Center for Environmental Health
Summary:
Fluorescent molecules -- i.e. substances which can be stimulated to emit light -- are extremely valuable tools in biological research and medical diagnosis. Fluorescence can be used for instance to analyze the regulation and expression of genes, to locate proteins in cells and tissues, to follow metabolic pathways and to study the location and migration of cells. Of particular importance is the combination of fluorescence imaging with novel techniques that allow tomographic three-dimensional visualization of objects in living organisms.

Fluorescent molecules – i.e. substances which can be stimulated to emit light – are extremely valuable tools in biological research and medical diagnosis. Fluorescence can be used for instance to analyze the regulation and expression of genes, to locate proteins in cells and tissues, to follow metabolic pathways and to study the location and migration of cells. Of particular importance is the combination of fluorescence imaging with novel techniques that allow tomographic three-dimensional visualization of objects in living organisms.

Related Articles


At the Helmholtz Zentrum München – German Research Center for Environmental Health together with the Technische Universität München an own institute is concerned with the development and refinement of such new technologies: the Institute for Biological and Medical Imaging headed by Professor Vasilis Ntziachristos.

The quality of optical imaging in tissues is naturally limited, since beyond a penetration depth of a few hundred micrometers the photons are massively scattered due to interactions with cell membranes and organelles which results in blurred images. Prof. Ntziachristos and his team, together with colleagues from the Harvard Medical School and the Massachusetts General Hospital in Boston, USA, report on the use of the so-called early arriving photons together with tomographic principles in  a recent article. Early photons are the first photons that arrive onto a photon detector after illumination of tissue by an ultra-short photon pulse and undergo less scattering in comparison to photons arriving at later times. Compared to continuous illumination measurements a combination of these less scattered photons with 360-degree illumination-detection resulted in sharper and more accurate images of mice under investigation.

With this technique, called ‚Early Photon Tomography’ (EPT), the scientists imaged lung tumors in living mice. For this purpose they injected a substance into to the animals, which normally does not fluoresce, but becomes fluorescent after contact with certain cysteine proteases such as cathepsins. The amount of these proteases is enriched in lung tumors which allows fluorescence imaging of the tumor tissue. Comparison with conventional x-ray tomography showed, that EPT is not only a very sensitive technique for imaging of lung tumors in living organisms, but also has the potential to reveal biochemical changes that reflect the progression of the disease, which could not be detected by conventional X-ray imaging.

While early-photons are typically associated with reduced signal available for image formation, the authors demonstrated that due to the wide-field implementation, EPT operates with very small reduction in average signal strength as in conventional tomographic methods operating using continuous light illumination. In this respect EPT is a practical method for significantly improving the performance of fluorescence tomography in animals over existing implementations. At present EPT is practicable only with small animals, but – as stated by the authors of the paper – further development of the equipment can allow niche applications of the technique also with larger organisms including humans.


Story Source:

The above story is based on materials provided by Helmholtz Zentrum München - German Research Center for Environmental Health. Note: Materials may be edited for content and length.


Journal Reference:

  1. Niedre et al. Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo. Proceedings of the National Academy of Sciences, 2008; 105 (49): 19126 DOI: 10.1073/pnas.0804798105

Cite This Page:

Helmholtz Zentrum München - German Research Center for Environmental Health. "Novel Technique For Fluorescence Tomography Of Tumors In Living Animals." ScienceDaily. ScienceDaily, 23 December 2008. <www.sciencedaily.com/releases/2008/12/081210090823.htm>.
Helmholtz Zentrum München - German Research Center for Environmental Health. (2008, December 23). Novel Technique For Fluorescence Tomography Of Tumors In Living Animals. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/12/081210090823.htm
Helmholtz Zentrum München - German Research Center for Environmental Health. "Novel Technique For Fluorescence Tomography Of Tumors In Living Animals." ScienceDaily. www.sciencedaily.com/releases/2008/12/081210090823.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins