Featured Research

from universities, journals, and other organizations

Unusual Microbial Ropes Grow Slowly In Cave Lake

Date:
December 24, 2008
Source:
Penn State
Summary:
Deep inside the Frasassi cave system in Italy and more than 1,600 feet below the Earth's surface, divers found filamentous ropes of microbes growing in the cold water, according to a team of researchers.

This image shows a microbial rope in the bottom half of the cave lake.
Credit: Penn State

Deep inside the Frasassi cave system in Italy and more than 1,600 feet below the Earth's surface, divers found filamentous ropes of microbes growing in the cold water, according to a team of Penn State researchers.

Related Articles


"Sulfur caves are a microbiology paradise. Many different types of organisms live in the caves and use the sulfur," says Jennifer L. Macalady, assistant professor of geosciences. "We are trying to map which organisms live where in the caves and how they correspond to the geochemical environment."

In this process, Macalady and her team discovered a previously unknown form of biofilm growing in the oxygen-deficient portion of the lake.

"The cave explorers had seen these strange biofilms," says Macalady. "So we asked them if they could get us a sample."

The Frasassi cave system is located north of Rome and south of Venice in the Marche region. These limestone caves are like New Mexico's Carlsbad Caverns and Lechuguilla Cave, but in those caves, sulfur entered the caves from oil and gas reserves, while in Italy, the sulfur source is a thick gypsum layer below. Having sulfur in the environment allows sulfur-using organisms to grow.

The researchers received about the weight of two paper clips of the strange rope to analyze. They reported the results of their DNA sequencing today (Dec. 19) at the American Geophysical Union Conference in San Francisco.

"We did not retrieve any sequences for known methane-producing organisms or known methane oxidizers," says Macalady.

The researchers did find that about half the organisms were bacteria and the other half belonged to another single-celled group of organisms called archaea. The researchers identified half the bacteria as sulfate reducers, bacteria that convert sulfates into sulfide to obtain energy. Of the archaea, more than half were associated with organisms usually found in deep sea sediments and referred to as marine benthic group D (MBG-D). Researchers do not know how MBG-D organisms obtain energy, although they are always found in oxygen-less locations.

The 2 inches of ropey biofilm under study was two-tenth of an inch in diameter. Microscopic images of the rope show that some of the single-celled organisms have shapes that intertwine with each other and some have tendrils.

"We do not know why the have the shape they do," says Macalady. "Microorganisms in them likely secrete some sticky goo, an extra-cellular polymeric substance -- slime that holds them together."

What the researchers do know is that the location where these ropes grow is very low in available energy -- considered an energy-limiting environment. The location can support only very slow growth. The ropes range in length from one to two meters, and radiocarbon dating places them at 1,000 to 2,000 years old.

"Previous researchers have estimated the rate of cell growth in some deep sea sediments to a cell division every thousand years," says Macalady.

Microscopic images of the rope using three dyes, one for DNA, one for bacteria and one for archaea, show very little activity in the bacteria or archaea, probably because the dyes highlight ribosomes and they only exist in a cell when it is actively metabolizing.

The researchers, who include Macalady; Daniel S. Jones and Rebecca R. McCauley, graduate students, geosciences; Irene Schaperdoth, research associate; and Dan Bloom, undergraduate honors student in astrobiology, are hoping to obtain more microbial rope samples this summer. They will work with divers to get samples from the deepest and shallowest ends of the ropes in order to find clues about how they grow.

The National Science Foundation and the NASA Astrobiology Institute supported this work.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Unusual Microbial Ropes Grow Slowly In Cave Lake." ScienceDaily. ScienceDaily, 24 December 2008. <www.sciencedaily.com/releases/2008/12/081219172031.htm>.
Penn State. (2008, December 24). Unusual Microbial Ropes Grow Slowly In Cave Lake. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2008/12/081219172031.htm
Penn State. "Unusual Microbial Ropes Grow Slowly In Cave Lake." ScienceDaily. www.sciencedaily.com/releases/2008/12/081219172031.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Earth & Climate News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Scientists Find Invisible Space Shield Protecting Earth

Scientists Find Invisible Space Shield Protecting Earth

Newsy (Nov. 27, 2014) — An invisible barrier is keeping dangerous super fast electrons from interfering with our atmosphere, but scientists aren't entirely sure how. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) — Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) — Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Antarctic Sea Ice Mystery Thickens... Literally

Antarctic Sea Ice Mystery Thickens... Literally

Newsy (Nov. 25, 2014) — Antarctic sea ice isn't only expanding, it's thicker than previously thought, and scientists aren't sure exactly why. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins