Featured Research

from universities, journals, and other organizations

Shape Changes In Aroma-producing Molecules Determine The Fragrances We Detect

Date:
December 26, 2008
Source:
City College of New York
Summary:
Shakespeare wrote "a rose by any other name would smell as sweet." But would it if the molecules that generate its fragrance were to change their shape?

Shakespeare wrote "a rose by any other name would smell as sweet." But would it if the molecules that generate its fragrance were to change their shape?
Credit: iStockphoto

Shakespeare wrote “a rose by any other name would smell as sweet.” But would it if the molecules that generate its fragrance were to change their shape?

Related Articles


That’s what Dr. Kevin Ryan, Assistant Professor of Chemistry at The City College of New York (CCNY) and collaborators in the laboratory of Dr. Stuart Firestein, Professor of Biology at Columbia University, set out to investigate. Their findings, reported December 22 in the journal “Chemistry & Biology,” shed new insight into how our sense of smell works and have potential applications in the design of flavors and fragrances.

When odor-producing molecules, known as odorants, pass through the nose, they trigger intracellular changes in a subset of the approximately 400 different varieties olfactory sensory neurons (OSN) housed in the nose’s internal membrane tissue, Professor Ryan explained. The unique reaction pattern produced, known as the olfactory code, is sent as a signal to the brain, which leads to perception of odors.

Professor Ryan and his team wanted to learn how these receptor cells respond when odorants change their shape. They studied the odorant octanal, an eight-carbon aldehyde that occurs in many flowers and citrus fruits. Octanal is a structurally flexible molecule that can adapt to many different shapes by rotating its chemical bonds.

The researchers designed and synthesized eight-carbon aldehydes that resembled octanal, but had their carbon chains locked by adding one additional bond. These molecules were tested on genetically engineered OSNs known to respond to octanal. This work was done in Professor Firestein’s laboratory at Columbia.

The aldehyde molecules that could stretch to their greatest length triggered strong activity in the OSNs. However, those molecules whose carbon chains were constrained into a U shape blocked the receptor and left the cell unable to sense octanal.

“Conformationally constrained odorants were more selective in the number of OSNs they activated,” Professor Ryan noted. “The results indicate that these odorant molecules might be able to alter fragrance mixture odors in two ways: by muting the activity of flexible odorants present in a mixture and by activating a smaller subset of OSNs than chemically related flexible odorants. This would produce a different olfactory code signature.”

Olfactory receptors belong to the G-protein coupled receptor (GPCR) class of proteins, a family of molecules found in cell membranes throughout the body. Professor Ryan pointed out that half of all commercial pharmaceuticals work by interaction with proteins within this family. Thus, the findings could also have applications to GPCR drug design, as well.


Story Source:

The above story is based on materials provided by City College of New York. Note: Materials may be edited for content and length.


Cite This Page:

City College of New York. "Shape Changes In Aroma-producing Molecules Determine The Fragrances We Detect." ScienceDaily. ScienceDaily, 26 December 2008. <www.sciencedaily.com/releases/2008/12/081222163053.htm>.
City College of New York. (2008, December 26). Shape Changes In Aroma-producing Molecules Determine The Fragrances We Detect. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2008/12/081222163053.htm
City College of New York. "Shape Changes In Aroma-producing Molecules Determine The Fragrances We Detect." ScienceDaily. www.sciencedaily.com/releases/2008/12/081222163053.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins