Featured Research

from universities, journals, and other organizations

Single Letter In Human Genome Points To Risk For High Cholesterol

Date:
January 3, 2009
Source:
Rockefeller University
Summary:
Write out every letter in the human genome, one A, C, T or G per millimeter, and the text would be 1,800 miles long, roughly the distance from New York to Colorado. Now, in the search for genes that affect how humans synthesize, process and break down cholesterol, scientists have found a single letter among this expanse of code that is associated with elevated LDL cholesterol levels, one of the leading health concerns that has come to dominate the 21st century.

Write out every letter in the human genome, one A, C, T or G per millimeter, and the text would be 1,800 miles long, roughly the distance from New York to Colorado. Now, in the search for genes that affect how humans synthesize, process and break down cholesterol, a consortium of researchers led by Rockefeller University scientists has found a single letter among this expanse of code that is associated with elevated LDL cholesterol levels, one of the leading health concerns that has come to dominate the 21st century.

Related Articles


The research, led by Jan L. Breslow, head of the Laboratory of Biochemical Genetics and Metabolism, brings a new level of understanding to an enzyme called HMGCR, the rate-limiting catalytic engine of cholesterol biosynthesis and the target of the much-revered cholesterol-lowering drugs known as statins. For years, scientists have known that HMGCR (the enzyme’s full name is 3-hydroxy-3-methylglutaryl coenzyme A reductase) plays a key role in cholesterol metabolism, but there was no evidence that common genetic variants existed in the gene that could affect how people metabolize cholesterol, an artery-clogging fat when produced (or consumed) in excess.

“In fact, HMGCR became the poster boy for how genes without common variation can still be good drug targets,” says first author Ralph Burkhardt, a postdoctoral fellow in the Breslow lab.

The work builds upon ongoing research involving the inhabitants of the Micronesian island of Kosrae, who have a higher burden of risk factors associated with obesity and heart disease. By taking advantage of the growing power of genomic databases and genetic and biochemical techniques, Burkhardt, Breslow and their colleagues showed that a single letter difference, known as a single nucleotide polymorphism or SNP, in the HMGCR gene was linked to higher LDL cholesterol levels in the 4,947 people whose blood was analyzed: a population of 2,346 Kosraeans and a European sample that was included for statistical power.

“At this point, nobody had an idea what biological effect this SNP would have,” says Burkhardt. “So we went on to look for a mechanism, one that could explain how this variant affects HMGCR expression and/or function.”

From the literature, the researchers, including Jeffrey M. Friedman, a Howard Hughes Medical Institute investigator and head of the Laboratory of Molecular Genetics, and Markus Stoffel, now of the Institute of Molecular System Biology in Switzerland, knew that people produce two forms of the HMGCR enzyme: a short form and a long one. Now they've discovered that the SNP in question modulates how much of each form each person produces, and that those with higher cholesterol levels produce more of the long form than the short one. Through a process called alternative splicing, the researchers further showed that when the cell transcribes the HMGCR gene, it skips a region of it called exon 13, leading to the shorter enzyme. This process, they believe, ultimately reduces cholesterol production in the body.

“Genes that affect the synthesis, processing and breakdown of these lipoproteins are closely linked to heart disease,” says Burkhardt. “This research has helped us to better understand atherosclerosis susceptibility and its complex genetic basis.”


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Burkhardt et al. Common SNPs in HMGCR in Micronesians and Whites Associated With LDL-Cholesterol Levels Affect Alternative Splicing of Exon13. Arteriosclerosis Thrombosis and Vascular Biology, 2008; 28 (11): 2078 DOI: 10.1161/ATVBAHA.108.172288

Cite This Page:

Rockefeller University. "Single Letter In Human Genome Points To Risk For High Cholesterol." ScienceDaily. ScienceDaily, 3 January 2009. <www.sciencedaily.com/releases/2008/12/081227223642.htm>.
Rockefeller University. (2009, January 3). Single Letter In Human Genome Points To Risk For High Cholesterol. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2008/12/081227223642.htm
Rockefeller University. "Single Letter In Human Genome Points To Risk For High Cholesterol." ScienceDaily. www.sciencedaily.com/releases/2008/12/081227223642.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) — The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) — Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) — Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) — A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins