Featured Research

from universities, journals, and other organizations

Decline Of Plankton That Gobble Carbon Dioxide Coincided With Ancient Global Cooling

Date:
January 12, 2009
Source:
Cornell University
Summary:
The evolutionary history of diatoms -- abundant oceanic plankton that remove billions of tons of carbon dioxide from the air each year -- needs to be rewritten, according to a new study. The findings suggest that after a sudden rise in species numbers, diatoms abruptly declined about 33 million years ago -- trends that coincided with severe global cooling.

Diatoms are abundant oceanic plankton that remove billions of tons of carbon dioxide from the air each year. Their evolutionary history needs to be rewritten, according to a new Cornell study.
Credit: NOAA/Gordon Taylor

The evolutionary history of diatoms -- abundant oceanic plankton that remove billions of tons of carbon dioxide from the air each year -- needs to be rewritten, according to a new Cornell study. The findings suggest that after a sudden rise in species numbers, diatoms abruptly declined about 33 million years ago -- trends that coincided with severe global cooling.

Related Articles


The study is published in the Jan. 8 issue of the journal Nature.

The research casts doubt on the long-held theory that diatoms' success was tied to an influx of nutrients into the oceans from the rise of grasslands about 18 million years ago. New evidence from a study led by graduate student Dan Rabosky of Cornell's Department of Ecology and Evolutionary Biology and the Cornell Laboratory of Ornithology takes into account a widespread problem in paleontology: that younger fossils are easier to find than older ones.

"We just tried to address the simple fact that the number of available fossils is colossally greater from recent time periods than from earlier time periods," Rabosky said. "It's a pretty standard correction in some fields, but it hasn't been applied to planktonic paleontology up till now."

More than 90 percent of known diatom fossils are younger than 18 million years. So an unadjusted survey of diatom fossils suggests that more diatom species were alive in the recent past than 18 million years ago.

The dearth of early fossils is understandable. Sampling for diatom fossils requires immense drill ships to bore into seafloor sediment. To find an ancient fossil, scientists first have to find ancient sediment -- and that's no easy task because plate tectonics constantly shift the ocean floor, fossils and all. Much of the seafloor is simply too young to sample.

So Rabosky and co-author Ulf Sorhannus of Edinboro University of Pennsylvania controlled for how many samples had been taken from each million-year period of the Earth's history, going back 40 million years. After reanalysis, the long-accepted boom in diatoms over the last 18 million years disappeared. In its place was a slow recent rise, with a much more dramatic increase and decline at the end of the Eocene epoch, about 33 million years ago.

With the new timeline, diatoms achieved their peak diversity at least 10 million years before grasslands became commonplace.

"If there was a truly significant change in diatom diversity at all, it happened 30 million years ago," Rabosky said. "The shallow, gradual increase we see is totally different from the kind of exponential increase you would expect if grasslands were the cause."

As an example of that kind of increase, Rabosky turned to another fossil record: horse teeth. Before grasslands, horses had small teeth suited for chewing soft leaves. But as grasslands appeared, much hardier teeth appeared adapted to a lifetime of chewing tough, silica-studded grass leaves. Diatoms ought to show a similar evolutionary response to the sudden availability of silica, Rabosky said, but they don't.

Although the new results don't explain the current prevalence of diatoms in the ocean, Rabosky said that whatever led to diatoms' rise at the end of the Eocene, the tiny organisms may have contributed to the global cooling that followed.

"Why diatom diversity peaked for 4 to 5 million years and then dropped is a big mystery," Rabosky said. "But it corresponds with a period when the global climate swung from hothouse to icehouse. It's tempting to speculate that these tiny plankton, by taking carbon dioxide out of the air, might have helped trigger the most severe global cooling event in the past 100 million years."

The research was supported in part by the National Science Foundation.


Story Source:

The above story is based on materials provided by Cornell University. Note: Materials may be edited for content and length.


Cite This Page:

Cornell University. "Decline Of Plankton That Gobble Carbon Dioxide Coincided With Ancient Global Cooling." ScienceDaily. ScienceDaily, 12 January 2009. <www.sciencedaily.com/releases/2009/01/090108111419.htm>.
Cornell University. (2009, January 12). Decline Of Plankton That Gobble Carbon Dioxide Coincided With Ancient Global Cooling. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/01/090108111419.htm
Cornell University. "Decline Of Plankton That Gobble Carbon Dioxide Coincided With Ancient Global Cooling." ScienceDaily. www.sciencedaily.com/releases/2009/01/090108111419.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Fossils & Ruins News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Bring Player Pianos Back to Life

Researchers Bring Player Pianos Back to Life

AP (Dec. 17, 2014) Stanford University wants to unlock the secrets of the player piano. Researchers are restoring and studying self-playing pianos and the music rolls that recorded major composers performing their own work. (Dec. 17) Video provided by AP
Powered by NewsLook.com
Domestication Might've Been Bad For Horses

Domestication Might've Been Bad For Horses

Newsy (Dec. 16, 2014) A group of scientists looked at the genetics behind the domestication of the horse and showed how human manipulation changed horses' DNA. Video provided by Newsy
Powered by NewsLook.com
Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

Mozart, Beethoven, Shubert and Bizet Manuscripts to Go on Sale

AFP (Dec. 16, 2014) A collection of rare manuscripts by composers Mozart, Beethoven, Shubert and Bizet are due to go on sale at auction on December 17. Duration: 00:57 Video provided by AFP
Powered by NewsLook.com
Old Ship Records to Shed Light on Arctic Ice Loss

Old Ship Records to Shed Light on Arctic Ice Loss

Reuters - Innovations Video Online (Dec. 15, 2014) Researchers are looking to the past to gain a clearer picture of what the future holds for ice in the Arctic. A project to analyse and digitize ship logs dating back to the 1850's aims to lengthen the timeline of recorded ice data. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins