Featured Research

from universities, journals, and other organizations

New Technique To Tap Full Potential Of Antibody Libraries Developed

Date:
January 20, 2009
Source:
Scripps Research Institute
Summary:
Antibodies are the attack dogs of the immune system, fighting off bacterial and other invaders. Massive libraries of synthetic antibodies that mimic this natural response, for instance to attack proteins critical to a particular cancer, are also available, but current techniques have allowed scientists to screen these antibodies for effectiveness against only a very limited number of disease-causing agents.

In hopes of more fully tapping the libraries' potential, a group of Scripps Research Institute scientists, led by Scripps Research President Richard A. Lerner, M.D., has for the first time developed a new screening technique that enables antibody screening against equally massive libraries of targets. This technique makes it possible to accelerate searches for new treatments against cancer and other diseases.

Related Articles


The work was recently reported in the Early Edition of the journal Proceedings of the National Academies of Science (PNAS).

The immune system produces antibodies to immobilize invaders, such as bacteria and viruses, by attaching to proteins referred to as antigens on those invaders. For many years, researchers have been producing huge collections of synthetic antibodies that collectively dwarf the number of antibodies humans produce naturally. These resources are a synthetic immune system with almost limitless potential, but existing techniques have only enabled screening the millions upon millions of available antibodies against handfuls of antigens.

"Many scientists have long recognized that efficient and sufficient access to the libraries demands an effective technique for also screening target antigens by the millions," said Lerner. "This work now makes that possible."

Traditional antibody research has involved developing systems in which the antibodies to be tested are incorporated into yeast cells, bacterial viruses known as phages, or some other form of "display" for testing against a target antigen protein. Past attempts to instead screen antibody libraries against antigen libraries have been stymied by a variety of technical challenges.

A key aspect to the success of the Lerner group's technique is using yeast cells to display the antibodies for screening, while using phages for the antigens, with each display labeled by a different colored fluorescent protein.

Screen results are determined using flow cytometry, a technique that allows the researchers to examine images of the yeast cells and phage particles and manipulate them. Using the differing displays means that antibody-antigen pairs that bind can be easily identified, because they show both fluorescent dye tag colors. Bound pairs are then filtered out of the mix for identification of the antibody and antigen involved, which requires genetic sequencing.

"It took us a while to get to the right conditions," says Diana Bowley, Ph.D., a Scripps Research staff scientist and the paper's first author with Teresa Jones, a Scripps Research scientific associate, "but now that we have, it's quite easy to visualize and isolate the antibody-antigen pairs."

To prove the concept, the group focused its initial experiments on a known interaction between a specific antibody and a fragment of a protein found on the outside of HIV particles. The group worked with some 10 million antibodies, but the library was weighted to include a known antibody. The antigen library was of similar size and comparably weighted to include the known HIV antigen. The weighting guaranteed the existence of an antibody-antigen pair, which in turn allowed the group to tweak its initial concept until it could identify pairings at the expected rate.

The group was able to successfully identify the expected pairings, proving the new technique's potential to enable screening of large antibody and antigen libraries. "We're still deciding where to take it next," says Bowley. One likely direction would be to work with a broad group of cancer proteins, which should identify antibodies with potential as new cancer treatments.

In addition to Bowley, Jones, and Lerner, Scripps Research Professor Dennis Burton was an author of the paper, titled "Libraries against libraries for combinatorial selection of replicating antigen-antibody pairs."

This research was supported by The Scripps Research Institute, the Skaggs Institute for Chemical Biology, and Pfizer Inc.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "New Technique To Tap Full Potential Of Antibody Libraries Developed." ScienceDaily. ScienceDaily, 20 January 2009. <www.sciencedaily.com/releases/2009/01/090115164611.htm>.
Scripps Research Institute. (2009, January 20). New Technique To Tap Full Potential Of Antibody Libraries Developed. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2009/01/090115164611.htm
Scripps Research Institute. "New Technique To Tap Full Potential Of Antibody Libraries Developed." ScienceDaily. www.sciencedaily.com/releases/2009/01/090115164611.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins