Featured Research

from universities, journals, and other organizations

Parasites In The Genome? Molecular Parasite Could Play An Important Role In Human Evolution

Date:
January 19, 2009
Source:
Max Planck Institute for Developmental Biology
Summary:
Researchers have determined the structure of a protein which is encoded by a parasitic genetic element and which is responsible for its mobility. The so-called LINE-1 retrotransposon is a mobile genetic element that can multiply and insert itself into chromosomal DNA at many different locations. Researchers say that there would be very few human genes that have not been affected in the past by the integration of a LINE-1 or Alu element.

Researchers at the Max Planck Institute for Developmental Biology in Tόbingen, Germany, determined the structure of a protein (L1ORF1p), which is encoded by a parasitic genetic element and which is responsible for its mobility. The so-called LINE-1 retrotransposon is a mobile genetic element that can multiply and insert itself into chromosomal DNA at many different locations. This disturbs the genetic code at the site of integration, which can have serious consequences for the organism.

On the other hand, this leads to genetic variation, an absolute prerequisite for the evolution of species. The structure of the L1ORF1p protein now allows a much more precise investigation of the mechanism of LINE-1 mobilization. This provides new insight into the relation between retrotransposons and retroviruses and probably also into certain evolutionary processes in humans and animals. Moreover, the researchers assume that the mechanism of LINE-1 retrotransposition can be exploited one day to precisely insert genetic information into specific locations. This would be an alternative to contemporary, less location-specific methods that are based on a retroviral mechanism.

The LINE-1 retrotransposon is a mobile gene that has multiplied massively in the history of the human genome. Presently, approximately 17 per cent of our DNA consist of LINE-1 sequences. This is an enormous proportion if one considers that the roughly 30.000 human proteins are encoded by less that 5 per cen of the DNA. The LINE-1 retrotransposon not only propagates itself, but also is responsible for the genomic integration of approximately one million Alu-sequences (another parasitic gene). Alu-sequences are only present in higher primates and occupy another 10 per cent of our genome. The insertion of LINE-1 and Alu sequences is a continuous process and roughly every twentieth newborn is estimated to contain at least one new insertion of such an element.

Consequently, there rarely is a human gene that has not been affected in the past by the integration of a LINE-1 or Alu element. “It is difficult to believe that the massive integration of LINE-1 and Alu sequences remained without consequences on human evolution. Thus it is surprising how little we know so far about the mechanism of retrotransposition and about the proteins and nucleic acids involved in this process“, says Oliver Weichenrieder, leading scientists at the Max Planck Institute for Developmental Biology. The researchers therefore try to gain new insights via the biochemical characterisation of the involved molecules and via the determination of their molecular structures. This provides the basis for a detailed functional analysis and reveals similarities to already known proteins, especially similarities that are not obvious from a simple comparison of the respective amino acid sequences.

In the presently published work Elena Khazina und Oliver Weichenrieder characterize one of two proteins that are encoded by the human LINE-1 retrotransposon. This so-called L1ORF1p protein binds to LINE-1 RNA, which was transcribed from a LINE-1 element in the genomic DNA. Subsequently, L1ORF1p likely supports the following reverse transcription of LINE-1 RNA into DNA. This process happens directly at the genomic integration site of the new LINE-1 element.

The researchers show that the L1ORF1p protein consists of three parts. The first part causes a self-association such that always three molecules come together to form a trimer. The other two parts are necessary for binding LINE-1 RNA. “Especially surprising was the identification of a so-called RRM domain in the middle part of the protein, since this part was believed so far to be rather unstructured”, says Elena Khazina. “Our crystal structure clearly proves the existence of this domain. Meanwhile we identified RRM-domains also in other retrotransposons, in a variety of animal and plant species“, adds the structural biologist. RRM-domains (RNA Recognition Motif) occur frequently in the cell, particularly in RNA-binding proteins.

The existence of an RRM-domain in L1ORF1p now explains why L1ORF1p binds LINE-1 RNA and how this could happen in detail. The insight into the structure of the L1ORF1p protein provides a new perspective and a good basis for future investigations of those cellular processes that are exploited by the LINE-1 element for its own propagation, and also for those mechanisms that are available to the cell to prevent the excessive propagation of retrotransposons.


Story Source:

The above story is based on materials provided by Max Planck Institute for Developmental Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Khazina et al. Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proceedings of the National Academy of Sciences, January 2009; DOI: 10.1073/pnas.0809964106

Cite This Page:

Max Planck Institute for Developmental Biology. "Parasites In The Genome? Molecular Parasite Could Play An Important Role In Human Evolution." ScienceDaily. ScienceDaily, 19 January 2009. <www.sciencedaily.com/releases/2009/01/090119081342.htm>.
Max Planck Institute for Developmental Biology. (2009, January 19). Parasites In The Genome? Molecular Parasite Could Play An Important Role In Human Evolution. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/01/090119081342.htm
Max Planck Institute for Developmental Biology. "Parasites In The Genome? Molecular Parasite Could Play An Important Role In Human Evolution." ScienceDaily. www.sciencedaily.com/releases/2009/01/090119081342.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) — Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) — The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) — A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) — Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins