Featured Research

from universities, journals, and other organizations

Global Warming Fix? Some Of Earth's Climate Troubles Should Face Burial At Sea, Scientists Say

Date:
January 29, 2009
Source:
University of Washington
Summary:
Making bales with 30 percent of global crop residues -- the stalks and such left after harvesting -- and then sinking the bales into the deep ocean could reduce the build up of global carbon dioxide in the atmosphere by up to 15 percent a year, according to new calculations.

Just past the continental shelf in the Gulf of Mexico -- the shelf is marked with the blue line -- a fan of sediment has formed on the seafloor made up of silt and debris that settles out of Mississippi River waters flowing into the gulf. These alluvial, or submarine, fans are found wherever rivers run into the ocean. Crop residues sunk in such fans would become covered with silt, further ensuring that carbon would be locked away for long periods.
Credit: S. Strand/UW/U.S. Geological Survey

Making bales with 30 percent of global crop residues – the stalks and such left after harvesting – and then sinking the bales into the deep ocean could reduce the build up of global carbon dioxide in the atmosphere by up to 15 percent a year, according to just published calculations.

That is a significant amount of carbon, the process can be accomplished with existing technology and it can be done year after year, according to Stuart Strand, a University of Washington research professor. Further the technique would sequester – or lock up – the carbon in seafloor sediments and deep ocean waters for thousands of years, he says.

All these things cannot be said for other proposed solutions for taking carbon dioxide out of the atmosphere, methods such as ocean fertilization, growing new forests or using crop residues in other ways, says Strand, who is lead author of a paper on the subject in the journal Environmental Science & Technology, published by the American Chemical Society.

Strand has devised a formula to measure the carbon-sequestration efficiency of this process and others using crop residues, something no one has done before.

Carefully tallying how much carbon would be released during the harvest, transportation and sinking of 30 percent of U.S. crop residues and comparing that to how much carbon could be sequestered, Strand says the process would be 92 percent efficient. That's more efficient than any other use of crop residue he considered, including simply leaving crop residue in the field, which is 14 percent efficient at sequestering carbon, or using crop residue to produce ethanol, which avoids the use fossil fuels, but is only 32 percent efficient.

Worldwide, farming is mankind's largest-scale activity. Thirty percent of the world's crop residue represents 600 megatons of carbon that, if sequestered in the deep ocean with 92 percent efficiency, would mean the amount of carbon dioxide in the atmosphere would be reduced from 4,000 megatons of carbon to 3,400 megatons annually, Strand says. That's about a 15 percent decrease.

The proposed process would remove only above-ground residue. Strand bases his calculations on using 30 percent of crop residue because that's what agricultural scientists say could sustainably be removed, the rest being needed to maintain carbon in the soil. Crop residue would be baled with existing equipment and transported by trucks, barges or trains to ports, just as crops are. The bales would be barged to where the ocean is 1,500 meters, or nearly a mile, deep and then the bales would be weighted with rock and sunk.

"The ocean waters below 1,500 meters do not mix significantly with the upper waters," Strand says. "In the deep ocean it is cold, oxygen is limited and there are few marine organisms that can break down crop residue. That means what is put there will stay there for thousands of years."

The article calls for research on the environmental effects of sinking crop residues in the ocean, effects that most likely will be borne by organisms living in the ocean sediments where the bales fall.

Strand says one way to minimize environmental effects would be to drop the residue onto alluvial fans found off the continental shelf wherever rivers pour into the ocean. Alluvial fans, sometimes call submarine fans when underwater, form as silt and debris from river water settles to the seafloor. Runoff from current agricultural fields means alluvial fans in the ocean are already partly made up of crop residue. Any bales dumped there would quickly be covered with silt, further ensuring the carbon would be sequestered for long periods.

Effects might also be minimized by concentrating the residue in a compact area. At the Mississippi alluvial fan in the Gulf of Mexico, spreading 30 percent of U.S. crop residue in an annual layer 4 meters, or 13 feet, deep would cover 260 square kilometers, or 100 square miles. That's about 0.02 percent of the area of the Gulf of Mexico, Strand says.

"Whatever the environmental impacts of sinking crop residue in the oceans turn out to be, they will need to be viewed in light of the damage to oceans because of acidification and global warming if we don't remove carbon dioxide from the atmosphere," Strand says.

Co-author of the paper is Gregory Benford, a professor of physics at the University of California, Irvine.

Strand, a faculty member with the UW's College of Forest Resources, is an environmental engineer known for his work on using plants to remediate contaminated groundwater, soil and sediment. He said he's been interested in ways to remove carbon dioxide from the atmosphere for nearly a decade and first read about sequestering crop residue in the deep ocean in Climatic Science in 2001. Benford was a co-author on that paper.

Strand says he thinks any method for removing excess carbon dioxide must do seven things: move hundreds of megatons of carbon, sequester that carbon for thousands of years, be repeatable for centuries, be something that can be implemented immediately using methods already at hand, not cause unacceptable environmental damage and be economical. He says sequestering crop residue in the deep ocean fits the criteria better than any other proposed solution.

"To help save the upper ocean and continental ecosystems from severe disruption by climate change, we must not only stop our dependence on fossil fuels, but also go carbon negative," Strand says. "Fossil fuels that are removed from sediments and burned are producing the increased atmospheric carbon that is driving climate warming. Sequestering crop residue biomass in the deep ocean is essentially recycling atmospheric carbon back into deep sediments."


Story Source:

The above story is based on materials provided by University of Washington. Note: Materials may be edited for content and length.


Journal Reference:

  1. Stuart E. Strand and Gregory Benford. Ocean Sequestration of Crop Residue Carbon: Recycling Fossil Fuel Carbon Back to Deep Sediments. Environmental Science & Technology, Online Jan. 12 [link]

Cite This Page:

University of Washington. "Global Warming Fix? Some Of Earth's Climate Troubles Should Face Burial At Sea, Scientists Say." ScienceDaily. ScienceDaily, 29 January 2009. <www.sciencedaily.com/releases/2009/01/090128212809.htm>.
University of Washington. (2009, January 29). Global Warming Fix? Some Of Earth's Climate Troubles Should Face Burial At Sea, Scientists Say. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/01/090128212809.htm
University of Washington. "Global Warming Fix? Some Of Earth's Climate Troubles Should Face Burial At Sea, Scientists Say." ScienceDaily. www.sciencedaily.com/releases/2009/01/090128212809.htm (accessed October 23, 2014).

Share This



More Earth & Climate News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

San Diego Zoo's White Rhinos Provide Hope for the Critically Endangered Species

Reuters - Light News Video Online (Oct. 22, 2014) — The pair of rare white northern rhinos bring hope for their species as only six remain in the world. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
Trick-or-Treating Banned Because of Polar Bears

Trick-or-Treating Banned Because of Polar Bears

Buzz60 (Oct. 21, 2014) — Mother Nature is pulling a trick on the kids of Arviat, Canada. As Mara Montalbano (@maramontalbano) tells us, the effects of global warming caused the town to ban trick-or-treating this Halloween. Video provided by Buzz60
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) — He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

How Detroit's Money Woes Led To U.N.-Condemned Water Cutoffs

Newsy (Oct. 20, 2014) — The United Nations says water is a human right, but should it be free? Detroit has cut off water to residents who can't pay, and the U.N. isn't happy. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins