Featured Research

from universities, journals, and other organizations

Air-filled Bones Extended Lung Capacity And Helped Prehistoric Reptiles Take First Flight

Date:
February 18, 2009
Source:
Ohio University
Summary:
In the Mesozoic Era, 70 million years before birds first conquered the skies, pterosaurs dominated the air with sparrow- to Cessna-sized wingspans. Researchers suspected that these extinct reptiles sustained flight through flapping, based on fossil evidence from the wings, but had little understanding of how pterosaurs met the energetic demands of active flight.

Balloon-like air sacs, which extended from the lungs to inside the skeleton of pterosaurs, provided an efficient breathing system for these ancient beasts.
Credit: Copyright Mark Witton, 2009

In the Mesozoic Era, 70 million years before birds first conquered the skies, pterosaurs dominated the air with sparrow- to Cessna-sized wingspans. Researchers suspected that these extinct reptiles sustained flight through flapping, based on fossil evidence from the wings, but had little understanding of how pterosaurs met the energetic demands of active flight.

A new study published February 17 in the journal PLoS One by researchers from Ohio University, College of the Holy Cross and the University of Leicester explains how balloon-like air sacs, which extended from the lungs to inside the skeleton of pterosaurs, provided an efficient breathing system for the ancient beasts. The system reduced the density of the body in pterosaurs, which in turn allowed for the evolution of the largest flying vertebrates.

"We offer a reconstruction of the breathing system in pterosaurs, one that proposes the existence of a mechanism with the same essential structure to that of modern birds — except 70 million years earlier," said study co-author Leon Claessens, an assistant professor of biology at the College of the Holy Cross.

The system would have facilitated the necessary gas exchange to enable sustained activity, added co-author Patrick O'Connor, an assistant professor of biomedical sciences at the Ohio University College of Osteopathic Medicine.

Claessens and O'Connor were inspired to conduct the study after David Unwin of the University of Leicester, then curator at the Natural History Museum in Berlin, showed them an extraordinarily preserved pterosaur in 2003. The scientists thought the specimen might finally shed light on how the animals powered sustained flight.

"The shape and size of the rib segments that articulate with the sternum indicate that the ribcage was mobile, contrary to previous ideas," Claessens said.

Unique and previously unrecognized projections on the ribs provided important leverage for the muscles that power lung ventilation, he added.

Because fossils rarely preserve soft tissues, the research team conducted a comparative study that included pterosaurs, birds and crocodilians in order to get a better understanding of the relationships among air sacs, lung structure and the skeleton. By using X-ray movies and CT scans, the group characterized how the skeleton works to move air through the lungs in living animals, and also how to identify the signature traces left on bones that have been invaded by air sacs.

Not only do the extinct pterosaurs show evidence that their bones that were invaded by air sacs, but patterns of pneumaticity throughout the entire skeleton of different pterosaur species parallel trends identified in many living bird groups. For example, there is a direct relationship between the proportion of the skeleton invaded by air sacs and the absolute body size of an animal.

"Whereas small-bodied pterosaurs and birds typically pneumatize only a restricted part of the backbone, larger-bodied species routinely pneumatize most bones of the body, including the wing skeleton out to the ends of the fingers," O'Connor said.

Such modifications of the skeleton would have reduced bone density and resolved a major problem with sustaining flight in large-bodied pterosaurs: the energetic cost of keeping a heavy body up in the air. Density reduction of the skeleton in pterosaurs may have been beneficial, particularly so in the aerial giants—just as it appears to be in the largest flying birds today.

Air sacs in birds also serve other purposes, such as for visual displays and the production of sound, the researchers said. The existence of an analogous air-sac system in pterosaurs highlights new areas of research in which paleobiologists can explore aspects of pterosaurian biology.

The research was funded by the National Science Foundation, Harvard University, and the Ohio University College of Osteopathic Medicine and Office of Research.


Story Source:

The above story is based on materials provided by Ohio University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio University. "Air-filled Bones Extended Lung Capacity And Helped Prehistoric Reptiles Take First Flight." ScienceDaily. ScienceDaily, 18 February 2009. <www.sciencedaily.com/releases/2009/02/090217212305.htm>.
Ohio University. (2009, February 18). Air-filled Bones Extended Lung Capacity And Helped Prehistoric Reptiles Take First Flight. ScienceDaily. Retrieved September 3, 2014 from www.sciencedaily.com/releases/2009/02/090217212305.htm
Ohio University. "Air-filled Bones Extended Lung Capacity And Helped Prehistoric Reptiles Take First Flight." ScienceDaily. www.sciencedaily.com/releases/2009/02/090217212305.htm (accessed September 3, 2014).

Share This



More Fossils & Ruins News

Wednesday, September 3, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Did Neanderthals Play Tic-Tac-Toe?

Did Neanderthals Play Tic-Tac-Toe?

Newsy (Sep. 2, 2014) — Artwork found in a Gibraltar cave that was possibly done by Neanderthals suggests they may have been smarter than we all thought. Video provided by Newsy
Powered by NewsLook.com
Millions Of Historical Public Domain Photos Added To Flickr

Millions Of Historical Public Domain Photos Added To Flickr

Newsy (Aug. 30, 2014) — Historian Kalev Leetaru uploaded a large collection of historical photos, images that were previously difficult to collect. Video provided by Newsy
Powered by NewsLook.com
Minds Blown: Scientists Develop Fish That Walk On Land

Minds Blown: Scientists Develop Fish That Walk On Land

Newsy (Aug. 28, 2014) — Canadian scientists looking into the very first land animals took a fish out of water and forced it to walk. Video provided by Newsy
Powered by NewsLook.com
Huge Ancient Wine Cellar Found In Israel

Huge Ancient Wine Cellar Found In Israel

Newsy (Aug. 28, 2014) — An international team uncovered a large ancient wine celler that likely belonged to a Cannonite ruler. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins