Featured Research

from universities, journals, and other organizations

How Cellular Protein Detects Viruses And Sparks Immune Response

Date:
March 3, 2009
Source:
University of Illinois at Urbana-Champaign
Summary:
Scientists reveal how a cellular protein recognizes an invading virus and alerts the body to the infection.

How RIG-I distinguishes between viral RNA and self (or cellular) RNA.
Credit: Image courtesy of University of Illinois at Urbana-Champaign

A study led by researchers at the University of Illinois reveals how a cellular protein recognizes an invading virus and alerts the body to the infection.

Related Articles


The research, described February 18 in the journal Science and led by Illinois physics professor and Howard Hughes Medical Institute investigator Taekjip Ha, settles a debate over how the protein, RIG-I (pronounced rig-EYE), is able to distinguish between viral RNA and self (or cellular) RNA.

“RIG-I is the first molecule in the immune response to detect viral RNA,” said Sua Myong, lead author on the study and a professor at the U. of I.’s Institute for Genomic Biology. Unlike most other proteins known to detect viral infections only in specialized immune cells, RIG-I is active in every cell type in the body, she said.

The RIG-I protein has two major parts: caspase-recruitment domains (CARDs) and an ATPase domain that consumes ATP, the cellular fuel molecule.

Previous studies had shown that the CARD domains actually inhibit the activity of RIG-I when no virus is present, but are vital to sounding the alarm and triggering an immune response once a certain type of virus has been detected.

Other studies had found that RIG-I recognizes an important feature of viral RNAs that is missing from most human RNAs. This feature, a “triphosphate” tag at a particular end, the “five-prime” (5’) end, of viral RNA, is a viral fingerprint that tells RIG-I that something is amiss. Detection of this tag starts a cascade of reactions that allows RIG-I to broadcast a message to other cellular components, and ultimately to other cells.

The researchers also knew that RIG-I was usually active in the presence of double-stranded RNA, not the single-stranded RNA found in most animal cells.

Earlier research had also shown that the central ATPase domain is critical to the function of the molecule. A single mutation in this region shuts down its activity altogether.

“We knew that the CARD domain was responsible for transmitting the antiviral signaling,” Myong said. “And we knew how the 5’-triphosphate tag is detected. But a big question remained about the ATPase domain: It was using ATP to do something – but what?”

To solve that mystery, the researchers used a technique termed “protein-induced fluorescent enhancement.” This method makes use of a fluorescent dye that, when attached to a specific region of a molecule such as RNA, glows with more or less intensity depending on its proximity to a protein that is interacting with that molecule.

Using this technique, the researchers found that the RIG-I protein moves back and forth (translocates) selectively on double-stranded RNA, and that this activity is greatly stimulated in the presence of 5’-triphosphate.

By requiring both the 5’-triphosphate and the double-stranded RNA for it to function, the RIG-I protein is able to very accurately detect a viral invader, said Ha.

Most cellular RNAs have their triphosphate tails bobbed, capped or otherwise modified before circulating in the cytosol of the cell, he said. “So this is one powerful way of distinguishing viral RNA from cellular RNA.”

Prior to this study, researchers did not know if RIG-I sensed both the double-stranded RNA and the 5’-triphosphate separately, or in an integrated manner, said Myong.

“Our work bridges the gap,” she said. “We show that it does both in an integrated manner.”

Ha is also an affiliate of the Institute for Genomic Biology and co-director of the Center for the Physics of Living Cells at Illinois.

Funding for this research was provided by the National Institute of General Medical Sciences and the National Science Foundation.

Animation.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "How Cellular Protein Detects Viruses And Sparks Immune Response." ScienceDaily. ScienceDaily, 3 March 2009. <www.sciencedaily.com/releases/2009/02/090219141504.htm>.
University of Illinois at Urbana-Champaign. (2009, March 3). How Cellular Protein Detects Viruses And Sparks Immune Response. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2009/02/090219141504.htm
University of Illinois at Urbana-Champaign. "How Cellular Protein Detects Viruses And Sparks Immune Response." ScienceDaily. www.sciencedaily.com/releases/2009/02/090219141504.htm (accessed October 25, 2014).

Share This



More Plants & Animals News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Black Bear Cub Goes Sunday Shopping

Black Bear Cub Goes Sunday Shopping

Reuters - Light News Video Online (Oct. 23, 2014) Price check on honey? Bear cub startles Oregon drugstore shoppers. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Dances With Wolves in China's Wild West

Dances With Wolves in China's Wild West

AFP (Oct. 23, 2014) One man is on a mission to boost the population of wolves in China's violence-wracked far west. The animal - symbol of the Uighur minority there - is under threat with a massive human resettlement program in the region. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Breakfast Debate: To Eat Or Not To Eat?

Breakfast Debate: To Eat Or Not To Eat?

Newsy (Oct. 23, 2014) Conflicting studies published in the same week re-ignited the debate over whether we should be eating breakfast. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins