Featured Research

from universities, journals, and other organizations

Brain Cells' Hidden Differences Linked To Potential Cancer Risk

Date:
February 24, 2009
Source:
Washington University School of Medicine
Summary:
Brain cells long lumped into the same category have hidden differences that may contribute to the formation of tumors, according to a new study.

Brain cells long lumped into the same category have hidden differences that may contribute to the formation of tumors, according to a new study from researchers at Washington University School of Medicine in St. Louis.

Related Articles


Scientists showed that brain cells known as astrocytes make use of different genes depending on what region of the mouse brain they came from. These differences are too subtle to overtly mark them as distinct cell types, but substantial enough to make it easier for the cells to multiply more in response to genetic changes that increase cancer risk.

"We've shown that identical-looking astrocytes from different brain regions are genetically distinct, and these molecular differences may alter the risk for cancer development," says senior author David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology.

In recent years, Gutmann has shown that the transition from a normal to a cancerous cell is heavily influenced by factors outside the cell, such as growth factors and other signals from neighboring cells. He calls the new finding the "yin" to the earlier research's "yang."

According to Gutmann, these dual lines of research show that there are two factors that explain why tumors form in some brain regions and not in others. First, the cell must live in a brain region that provides the right environmental signals to facilitate tumor formation. Second, as revealed by the new research, the cell itself also must be responsive to those environmental signals.

"In this regard, tumor formation and growth requires both a permissive environment and a receptive cell type," Gutmann says.

All of the body's cells have the same genes, but different cell types turn genes on and off or use certain genes more or less often. These patterns of activating and inactivating genes both allow cells to grow and develop into specialized structures and to take on specialized roles at the level of individual cells. Astrocytes, for example, have properties that allow them to support other brain cells.

To gain insights into the significance of potential genetic differences between astrocytes from different brain regions, Gutmann and his colleagues used a mouse model of a common inherited cancer syndrome, neurofibromatosis type 1 (NF1). In children with NF1, brain tumors typically arise in the optic nerve and brainstem and only rarely appear in the cortex. The condition is caused by a mutation in a gene known as the neurofibromatosis 1 gene.

When Gutmann and post-doctoral researcher Tu-Hsueh Yeh, M.D., Ph.D., examined astrocytes from different brain regions under the microscope and in other standard tests, the astrocytes looked similar. But when the researchers analyzed gene activity levels — which genes the cells used to make proteins and how often they were used — sharp differences became apparent. For example, astrocytes from the cortex have low levels of neurofibromatosis-1 gene expression compared to astrocytes from the optic nerve or brainstem.

In addition, when they disabled the neurofibromatosis 1 gene in cell culture and in the mouse brain, they found what Gutmann called "dramatically increased" growth in astrocytes from the brainstem and optic nerve. In contrast, the same change had no effect on growth of astrocytes from the cortex.

"These exciting results suggest that not all astrocytes are the same, and that genetic differences between astrocyte populations may partly dictate where brain tumors form in children with NF1," says Gutmann. "Future studies aimed at understanding the complex interplay between environmental signals and receptive cell types may lead to an improved understanding of brain tumor formation and help us customize our treatments in ways that improve their effectiveness."

Funding from the National Institutes of Health and the National Cancer Institute supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yeh et al. Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia, Feb 3, 2009; DOI: 10.1002/glia.20845

Cite This Page:

Washington University School of Medicine. "Brain Cells' Hidden Differences Linked To Potential Cancer Risk." ScienceDaily. ScienceDaily, 24 February 2009. <www.sciencedaily.com/releases/2009/02/090219211923.htm>.
Washington University School of Medicine. (2009, February 24). Brain Cells' Hidden Differences Linked To Potential Cancer Risk. ScienceDaily. Retrieved November 21, 2014 from www.sciencedaily.com/releases/2009/02/090219211923.htm
Washington University School of Medicine. "Brain Cells' Hidden Differences Linked To Potential Cancer Risk." ScienceDaily. www.sciencedaily.com/releases/2009/02/090219211923.htm (accessed November 21, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, November 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins