Featured Research

from universities, journals, and other organizations

Brain Cells' Hidden Differences Linked To Potential Cancer Risk

Date:
February 24, 2009
Source:
Washington University School of Medicine
Summary:
Brain cells long lumped into the same category have hidden differences that may contribute to the formation of tumors, according to a new study.

Brain cells long lumped into the same category have hidden differences that may contribute to the formation of tumors, according to a new study from researchers at Washington University School of Medicine in St. Louis.

Scientists showed that brain cells known as astrocytes make use of different genes depending on what region of the mouse brain they came from. These differences are too subtle to overtly mark them as distinct cell types, but substantial enough to make it easier for the cells to multiply more in response to genetic changes that increase cancer risk.

"We've shown that identical-looking astrocytes from different brain regions are genetically distinct, and these molecular differences may alter the risk for cancer development," says senior author David H. Gutmann, M.D., Ph.D., the Donald O. Schnuck Family Professor of Neurology.

In recent years, Gutmann has shown that the transition from a normal to a cancerous cell is heavily influenced by factors outside the cell, such as growth factors and other signals from neighboring cells. He calls the new finding the "yin" to the earlier research's "yang."

According to Gutmann, these dual lines of research show that there are two factors that explain why tumors form in some brain regions and not in others. First, the cell must live in a brain region that provides the right environmental signals to facilitate tumor formation. Second, as revealed by the new research, the cell itself also must be responsive to those environmental signals.

"In this regard, tumor formation and growth requires both a permissive environment and a receptive cell type," Gutmann says.

All of the body's cells have the same genes, but different cell types turn genes on and off or use certain genes more or less often. These patterns of activating and inactivating genes both allow cells to grow and develop into specialized structures and to take on specialized roles at the level of individual cells. Astrocytes, for example, have properties that allow them to support other brain cells.

To gain insights into the significance of potential genetic differences between astrocytes from different brain regions, Gutmann and his colleagues used a mouse model of a common inherited cancer syndrome, neurofibromatosis type 1 (NF1). In children with NF1, brain tumors typically arise in the optic nerve and brainstem and only rarely appear in the cortex. The condition is caused by a mutation in a gene known as the neurofibromatosis 1 gene.

When Gutmann and post-doctoral researcher Tu-Hsueh Yeh, M.D., Ph.D., examined astrocytes from different brain regions under the microscope and in other standard tests, the astrocytes looked similar. But when the researchers analyzed gene activity levels — which genes the cells used to make proteins and how often they were used — sharp differences became apparent. For example, astrocytes from the cortex have low levels of neurofibromatosis-1 gene expression compared to astrocytes from the optic nerve or brainstem.

In addition, when they disabled the neurofibromatosis 1 gene in cell culture and in the mouse brain, they found what Gutmann called "dramatically increased" growth in astrocytes from the brainstem and optic nerve. In contrast, the same change had no effect on growth of astrocytes from the cortex.

"These exciting results suggest that not all astrocytes are the same, and that genetic differences between astrocyte populations may partly dictate where brain tumors form in children with NF1," says Gutmann. "Future studies aimed at understanding the complex interplay between environmental signals and receptive cell types may lead to an improved understanding of brain tumor formation and help us customize our treatments in ways that improve their effectiveness."

Funding from the National Institutes of Health and the National Cancer Institute supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Yeh et al. Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia, Feb 3, 2009; DOI: 10.1002/glia.20845

Cite This Page:

Washington University School of Medicine. "Brain Cells' Hidden Differences Linked To Potential Cancer Risk." ScienceDaily. ScienceDaily, 24 February 2009. <www.sciencedaily.com/releases/2009/02/090219211923.htm>.
Washington University School of Medicine. (2009, February 24). Brain Cells' Hidden Differences Linked To Potential Cancer Risk. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2009/02/090219211923.htm
Washington University School of Medicine. "Brain Cells' Hidden Differences Linked To Potential Cancer Risk." ScienceDaily. www.sciencedaily.com/releases/2009/02/090219211923.htm (accessed July 30, 2014).

Share This




More Health & Medicine News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Concern Grows Over Worsening Ebola Crisis

Concern Grows Over Worsening Ebola Crisis

AFP (July 30, 2014) Pan-African airline ASKY has suspended all flights to and from the capitals of Liberia and Sierra Leone amid the worsening Ebola health crisis, which has so far caused 672 deaths in Guinea, Liberia and Sierra Leone. Duration: 00:43 Video provided by AFP
Powered by NewsLook.com
At Least 20 Chikungunya Cases in New Jersey

At Least 20 Chikungunya Cases in New Jersey

AP (July 30, 2014) At least 20 New Jersey residents have tested positive for chikungunya, a mosquito-borne virus that has spread through the Caribbean. (July 30) Video provided by AP
Powered by NewsLook.com
Xtreme Eating: Your Daily Caloric Intake All On One Plate

Xtreme Eating: Your Daily Caloric Intake All On One Plate

Newsy (July 30, 2014) The Center for Science in the Public Interest released its 2014 list of single meals with whopping calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins