Featured Research

from universities, journals, and other organizations

Patience Pays Off With Methanol For Uranium Bioremediation

Date:
February 24, 2009
Source:
Crop Science Society of America
Summary:
Uranium contamination is a devastating legacy of nuclear weapon and energy development, but new testing has shown that adding organic molecules can positively affect the bioremediation of this uranium, converting it to a solid mineral and sequestering it within the sediment.

The legacy of nuclear weapons and nuclear energy development has left ground water and sediment at dozens of sites across the United States and many more around the world contaminated with uranium.

The uranium is transported through ground water as uranyl (U6+). In one bioremediation strategy, uranium immobilization in contaminated ground water and sediment may be achieved by the addition of organic molecules known as electron donors to stimulate microbial activity. The microbial community utilizes the electron donors as ‘food’, consuming all of the available oxygen during aerobic respiration. Once the ground water becomes anaerobic, U6+may be converted to U4+ as UO2, a solid mineral, sequestering the uranium within the sediment. Researchers have been investigating the effectiveness of various electron donors, but have been frustrated by residual U6+ which is not converted to insoluble U4+.

A team of scientists from Oak Ridge National Laboratory has investigated effectiveness of several electron donors for uranium bioremediation in a study funded by the Department of Energy’s Environmental Remediation Sciences Program. Madden et al. report that the particular electron donor chosen affects not only the rate of uranium removal from solution, but also the extent of U6+ conversion to U4+. Results of the study were published in the January-February issue of the Journal of Environmental Quality.

Microcosm experiments containing uranium-contaminated sediment and ground water demonstrated equivalent rapid uranium reduction when amended with ethanol or glucose. In contrast, reduction was delayed by several days when microcosms were amended with methanol. Spectroscopic analyses of uranium oxidation state in stimulated microcosm sediment slurries demonstrated almost complete uranium reduction when methanol was the donor, as compared with less than half reduced using ethanol or glucose. However, addition of methanol did not always result in uranium reduction. These results suggest that the use of donors such as methanol which are not as readily and rapidly coupled to microbial metal reduction may lead to increased stability of the subsurface towards uranium immobilization.

Research is ongoing at Oak Ridge National Laboratory to investigate the effectiveness of various electron donors for long-term uranium immobilization. Further research is needed to understand the coupling between the microbial community and the biogeochemical processes that occur to immobilize the uranium. While previous research has focused on individual groups of bacteria which most efficiently reduce uranium, these results suggest the need for understanding the microbial community system.


Story Source:

The above story is based on materials provided by Crop Science Society of America. Note: Materials may be edited for content and length.


Journal Reference:

  1. Madden et al. Donor-dependent Extent of Uranium Reduction for Bioremediation of Contaminated Sediment Microcosms. Journal of Environmental Quality, 2009; 38 (1): 53 DOI: 10.2134/jeq2008.0071

Cite This Page:

Crop Science Society of America. "Patience Pays Off With Methanol For Uranium Bioremediation." ScienceDaily. ScienceDaily, 24 February 2009. <www.sciencedaily.com/releases/2009/02/090223121411.htm>.
Crop Science Society of America. (2009, February 24). Patience Pays Off With Methanol For Uranium Bioremediation. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2009/02/090223121411.htm
Crop Science Society of America. "Patience Pays Off With Methanol For Uranium Bioremediation." ScienceDaily. www.sciencedaily.com/releases/2009/02/090223121411.htm (accessed July 28, 2014).

Share This




More Earth & Climate News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Carbon Trap: US Exports Global Warming

The Carbon Trap: US Exports Global Warming

AP (July 28, 2014) AP Investigation: As the Obama administration weans the country off dirty fuels, energy companies are ramping-up overseas coal exports at a heavy price. (July 28) Video provided by AP
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Phoenix Thunderstorm Creates Giant Wall of Dust

Phoenix Thunderstorm Creates Giant Wall of Dust

Reuters - US Online Video (July 26, 2014) A giant wall of dust slowly moves north over the Phoenix area after a summer monsoon thunderstorm. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins