Featured Research

from universities, journals, and other organizations

Technique Tricks Bacteria Into Generating Their Own Vaccine

Date:
February 24, 2009
Source:
Ohio State University
Summary:
Scientists have developed a way to manipulate bacteria so they will grow mutant sugar molecules on their cell surfaces that could be used against them as the key component in potent vaccines. Any resulting vaccines, if proven safe, could be developed more quickly, easily and cheaply than many currently available vaccines used to prevent bacterial illnesses.

E. coli growing on an agar plate.
Credit: iStockphoto/Linde Stewart

Scientists have developed a way to manipulate bacteria so they will grow mutant sugar molecules on their cell surfaces that could be used against them as the key component in potent vaccines.

Related Articles


Any resulting vaccines, if proven safe, could be developed more quickly, easily and cheaply than many currently available vaccines used to prevent bacterial illnesses.

Most vaccines against bacteria are created with polysaccharides, or long strings of sugars found on the surface of bacterial cells. The most common way to develop these vaccines is to remove sugars from the cell surface and link them to proteins to give them more power to kill bacteria.

Polysaccharides alone typically do not generate a strong enough antibody response needed to kill bacteria. But this new technique would provide an easy approach to make a small alteration to the sugar structure and produce the polysaccharide by simple fermentation.

“We are showing for the first time that you don’t have to use complicated chemical reactions to make the alteration to the polysaccharide,” said Peng George Wang, Ohio Eminent Scholar and professor of biochemistry and chemistry at Ohio State University and senior author of the study. “All we need to do is ferment the bacteria, and then the polysaccharides that grow on the surface of the cell already incorporate the modification.”

The research is scheduled to appear in the online early edition of the Proceedings of the National Academy of Sciences.

In vaccines, polysaccharides linked with carrier proteins are injected into the body. That sets off a process that causes the release of antibodies that recognize the sugars as an unwanted foreign body. The antibodies then remain dormant but ready to attack if they ever see the same polysaccharides again – which would be a signal that bacteria have infected the body.

Polysaccharides are chains of sugars, or monosaccharides, and they are targeted for vaccine development because they are the portion of bacterial cells that interact with the rest of the body.

Escherichia coli was used as a model for the study. Wang and colleagues used one of the existing monosaccharides present on the E. coli cell surface polysaccharides, called fucose, to generate this new modification. They manipulated the structure of the fucose to create 10 different analogs, or forms of the sugar in which just one small component is changed.

The scientists then manually introduced these altered forms of fucose to a solution in which bacterial cells were growing, and the bacterial cells absorbed the altered fucose as they would normal forms of the sugar. The presence of these altered forms of fucose then altered the properties of the polysaccharides that grew on the surface of the cells.

“This way, we don’t have to do anything to modify the polysaccharides. We let bacteria do it for us,” Wang said.

“Bacteria grow lots of polysaccharides – it’s similar to the way humans grow hair. But for a vaccine, you need to make the molecules more active, or energetic,” he said. “In our method, we feed the bacteria these chemicals while they are growing, and those chemicals end up in the polysaccharides and that makes them more immunogenic. That’s the technology.”

Wang said the approach is likely to be applicable to many different kinds of bacteria. But each type of pathogen must be tested individually with the alteration of sugars unique to its surface.

“If you want to prevent one type of bacteria, you have to find something very unique for this bacteria because different microbes have different characteristics,” he said. “You have to find the oddest thing on the cell surface. It has to be on surface because what the body sees first is the surface.”

His lab will next be testing the method’s effectiveness on the pneumococcus bacteria under an exploratory $100,000 grant from the Bill & Melinda Gates Foundation. The current vaccine to prevent pneumonia in babies and the elderly combines 23 strains of bacteria, making it complex and expensive to produce. Each injection costs about $50 in the United States. A less expensive way to develop the vaccine would increase its availability in the developing world, Wang said.

This published research was supported by an endowed Ohio Eminent Scholar Professorship on Macromolecular Structure and Function in the Department of Biochemistry at Ohio State.

Co-authors of the work are Wen Yi, a recipient of a Ph.D. from the Ohio State Biochemistry Program who is now at the California Institute of Technology; Xi Chen of the University of California, Davis; Jianjun Li of the Institute for Biological Sciences at National Research Council of Canada; Chengfeng Xia, Guangyan Zhou and Wenpeng Zhang of Ohio State’s Departments of Biochemistry and Chemistry; Yanhong Li of the University of California, Davis; Xianwei Liu of Shandong University, China; and Wei Zhao of Nankai University, China.


Story Source:

The above story is based on materials provided by Ohio State University. The original article was written by Emily Caldwell. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Technique Tricks Bacteria Into Generating Their Own Vaccine." ScienceDaily. ScienceDaily, 24 February 2009. <www.sciencedaily.com/releases/2009/02/090223221427.htm>.
Ohio State University. (2009, February 24). Technique Tricks Bacteria Into Generating Their Own Vaccine. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2009/02/090223221427.htm
Ohio State University. "Technique Tricks Bacteria Into Generating Their Own Vaccine." ScienceDaily. www.sciencedaily.com/releases/2009/02/090223221427.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
The Hottest Food Trends for 2015

The Hottest Food Trends for 2015

Buzz60 (Dec. 17, 2014) Urbanspoon predicts whicg food trends will dominate the culinary scene in 2015. Mara Montalbano (@maramontalbano) has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins