Featured Research

from universities, journals, and other organizations

Muscular Dystrophy And Exercise-induced Muscle Fatigue Have More In Common Than You Might Think

Date:
March 3, 2009
Source:
Journal of Clinical Investigation
Summary:
Duchenne muscular dystrophy (DMD), which is a severe disorder characterized by rapid progression of muscle weakness that ultimately leads to death, is caused by genetic mutations that result in the absence of the protein dystrophin. Loss of localization of the muscle-related molecule nNOS at the muscle cell membrane (which is known as the sarcolemma) is also observed in DMD and has been linked to muscle damage. What determines the localization of nNOS in muscle cells is not well understood.

Duchenne muscular dystrophy (DMD), which is a severe disorder characterized by rapid progression of muscle weakness that ultimately leads to death, is caused by genetic mutations that result in the absence of the protein dystrophin.

Loss of localization of the muscle-related molecule nNOS at the muscle cell membrane (which is known as the sarcolemma) is also observed in DMD and has been linked to muscle damage. What determines the localization of nNOS in muscle cells is not well understood.

However, in a new study, Dongsheng Duan and his colleagues, at the University of Missouri, Columbia, have determined that specific regions of dystrophin anchor nNOS to the sarcolemma, providing new avenues of research for the development of DMD therapies.

The research is published Feb. 23, 2009, in the Journal of Clinical Investigation.

In the study, analysis of mutant forms of dystrophin lacking specific regions indicated that regions known as spectrin-like repeats 16 and 17 (R16/17) were necessary for localizing nNOS to the sarcolemma. Further, treatment of a mouse model of DMD with gene therapy to introduce the region R16/17 of dystrophin restored muscle strength and exercise performance. This targeting of nNOS to the sarcolemma enabled nNOS to improve blood flow through the muscles during exercise.

In an accompanying commentary, Ahlke Heydemann and Elizabeth McNally, at the University of Chicago, Chicago, indicate that in addition to providing targets for DMD, these results also "advance our understanding of exercise-induced muscle fatigue and treatment."


Story Source:

The above story is based on materials provided by Journal of Clinical Investigation. Note: Materials may be edited for content and length.


Journal References:

  1. Lai et al. Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. Journal of Clinical Investigation, 2009; DOI: 10.1172/JCI36612
  2. McNally et al. NO more muscle fatigue. Journal of Clinical Investigation, 2009; DOI: 10.1172/JCI38618

Cite This Page:

Journal of Clinical Investigation. "Muscular Dystrophy And Exercise-induced Muscle Fatigue Have More In Common Than You Might Think." ScienceDaily. ScienceDaily, 3 March 2009. <www.sciencedaily.com/releases/2009/02/090224004346.htm>.
Journal of Clinical Investigation. (2009, March 3). Muscular Dystrophy And Exercise-induced Muscle Fatigue Have More In Common Than You Might Think. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/02/090224004346.htm
Journal of Clinical Investigation. "Muscular Dystrophy And Exercise-induced Muscle Fatigue Have More In Common Than You Might Think." ScienceDaily. www.sciencedaily.com/releases/2009/02/090224004346.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins