Featured Research

from universities, journals, and other organizations

New Models Question Old Assumptions About How Many Molecules It Takes To Control Cell Division

Date:
March 8, 2009
Source:
Virginia Tech
Summary:
A single cell is exquisitely sensitive to its surroundings. It receives input signals, processes the information, makes decisions, and issues commands for making the proper response. As with any control system, noise -- errors, slip-ups, misreads -- can get in the way of correct decision making. Biologists and engineers have created a mathematical model to explore the roles of noise in controlling the basic events of the cell cycle.

A single cell – whether a yeast cell or one of your cells – is exquisitely sensitive to its surroundings. It receives input signals, processes the information, makes decisions, and issues commands for making the proper response. As with any control system, noise – errors, slip-ups, mis-reads – can get in the way of correct decision making. Virginia Tech biologists and engineers have created a mathematical model to explore the roles of noise in controlling the basic events of the cell cycle – DNA replication and cell division.

Their work will appear the week of February 23 in the Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS) and later in the print version of the special feature issue on complex systems. The article, "Exploring the Roles of Noise in the Eukaryotic Cell Cycle," is by postdoctoral associate Sandip Kar; William Baumann, professor of electrical and computer engineering; Mark Paul, professor of mechanical engineering; and John Tyson, University Distinguished Professor of biological sciences.

Their efforts to accurately calculate the effects of noise in a yeast cell revealed flaws in two accepted notions about information processing in single cells: about the numbers of messenger RNA (mRNA) molecules in a cell, and about how long they live.

A fundamental challenge of systems biology is trying to understand the molecular basis of decision making in a single cell. "Information processing is done by a molecular network consisting of interacting genes and proteins," Tyson said. "You could compare it to a computer that is based on integrated circuits or to a mechanical control system based on sensors, wires and servomotors -- except that information processing in cells is unique in two ways. First, the cell is a sloppy, liquid environment, with molecules bouncing around and reacting with one another. Second, cells are extremely tiny; therefore sensitive to random fluctuations in the number of molecules being created or destroyed at any given moment."

Nonetheless, the ebb and flow of molecules in a cell must reliably convey instructions for such essential processes as DNA replication and cell division.

How big are the molecular fluctuations expected in a single yeast cell? Physicists estimate molecular fluctuation using a rule-of-thumb that the size of typical fluctuations is the square root of the average number of molecules. "If there are on average 900 molecules of a particular protein in a cell, then we can expect fluctuations of plus or minus 30 molecules, or 3.3 percent," said Tyson. "That is not too bad."

For DNA there might be a severe problem, Tyson noted, "because there is only one copy of every gene in a yeast cell. But cells are equipped with an elaborate and expensive mechanism to replicate DNA molecules and not allow the random fluctuations predicted by statistical physics."

The weak link in the is mRNA: the molecule that carries information from the gene to the cell's ribosomes, where proteins are made.

The literature reports that there is on average only 1 mRNA molecule per gene per cell, in yeast, and that each mRNA molecule lives, on average, for 15 to 20 minutes before it is degraded. "This is intriguing," said Tyson, "because the physicist's rule-of-thumb would predict very large fluctuations in mRNA abundance – sometimes 1, sometimes 0, sometimes 2 or 3 or 4 -- which means the noise among mRNA molecules is huge, and it propagates to the level of the encoded protein."

The noisy fluctuations in protein level may be 50 percent instead of 3 percent. "There is no way the control system can work in the face of such large fluctuations," Tyson said. "It would be completely unreliable."

Progression through the cell cycle is indeed a noisy process, with typical flucutations of 15 to 20 percent for the time taken to complete the process. To achieve this level of control, the Virginia Tech researchers conclude, in their PNAS paper, that 1) the average number of specific mRNA molecules must be 5 to 10 times larger than the generally accepted value, or 2) the half-life of mRNA molecules must be 10 to 20 times shorter than the reported value, or 3) the cell must have specific mechanisms for noise reduction in its mRNA populations. Or some combination of these strategies.

"At least we have an accurate model that tells where the questions are," Tyson said. "Computational cell biologists address puzzles like this one by building reliable mathematical models, based on basic principles of physics and chemistry, that address the roles of noise and noise reduction mechanisms in living cells."

Tyson, Baumann, and Paul are lead investigators on an NIH National Institute of General Medical Sciences funded research project that also includes Yang Cao, assistant professor; Cliff Shaffer, professor; Layne Watson, professor; and Adrian Sandu, associate professor, all of Virginia Tech's computer science department in the College of Engineering.

The group is continuing to build more elaborate and accurate models of molecular noise in the cell cycle control system of yeast cells and to compare these models to the latest experimental measurements of molecular fluctuations in single cells.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "New Models Question Old Assumptions About How Many Molecules It Takes To Control Cell Division." ScienceDaily. ScienceDaily, 8 March 2009. <www.sciencedaily.com/releases/2009/02/090224154904.htm>.
Virginia Tech. (2009, March 8). New Models Question Old Assumptions About How Many Molecules It Takes To Control Cell Division. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/02/090224154904.htm
Virginia Tech. "New Models Question Old Assumptions About How Many Molecules It Takes To Control Cell Division." ScienceDaily. www.sciencedaily.com/releases/2009/02/090224154904.htm (accessed October 2, 2014).

Share This



More Plants & Animals News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study Says Losing Sense Of Smell Can Indicate Death

Study Says Losing Sense Of Smell Can Indicate Death

Newsy (Oct. 2, 2014) Researchers found elderly adults with a poor sense of smell are more likely to die within five years. Video provided by Newsy
Powered by NewsLook.com
Dolphins and Turtles Under Threat in Pakistan

Dolphins and Turtles Under Threat in Pakistan

AFP (Oct. 2, 2014) The turtles and Dolphins of Pakistan's Indus river - both protected by law - are in a fight for their survival as man's activities threatens their futures. Duration: 02:29 Video provided by AFP
Powered by NewsLook.com
'Harvest Break' Endures in Maine Potato Fields

'Harvest Break' Endures in Maine Potato Fields

AP (Oct. 2, 2014) Educators and farmers are clinging to a tradition aimed at giving farmers much-needed help in getting potatoes out of the fields and into storage before the ground freezes in the nation's northeast corner. (Oct. 2) Video provided by AP
Powered by NewsLook.com
Attacking Superbugs

Attacking Superbugs

Ivanhoe (Oct. 1, 2014) Two weapons hospitals can use to attack superbugs. Scientists in Ireland created a new gel resistant to superbugs, and a robot that can disinfect a room in minutes. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins