Featured Research

from universities, journals, and other organizations

Hot Electrons In Carbon: Graphite Behaves Like Semiconductor

Date:
March 13, 2009
Source:
Forschungsverbund Berlin e.V. (FVB)
Summary:
Scientists have found that graphite behaves like a semiconductor in ultrafast time scales. The results are of fundamental importance for future electronic devices based on carbon, in which high electrical fields or frequencies are processed.

Nanomaterials like carbon possess unique properties, which have led to first applications in novel electronic devices and sensors. These materials are based on ordered, atomically thin layers of carbon atoms, for example in the form of a single layer as so-called "graphene", or rolled-up in carbon nanotubes.
Credit: Image courtesy of Forschungsverbund Berlin e.V. (FVB)

Scientists have found that graphite behaves like a semiconductor in ultrafast time scales. The results are of fundamental importance for future electronic devices based on carbon, in which high electrical fields or frequencies are processed.

Nanomaterials like carbon possess unique properties, which have led to first applications in novel electronic devices and sensors. These materials are based on ordered, atomically thin layers of carbon atoms, for example in the form of a single layer as so-called “graphene”, or rolled-up in carbon nanotubes. The electronic properties of such structures are closely related to those of graphite, which consists of a stack of graphene sheets.

Despite intensive research in the past, the fundamental behavior of electrons in this material are not fully understood and still controversially debated.

Markus Breusing, Claus Ropers und Thomas Elsaesser, three scientists from the Max-Born-Institute in Berlin, have now investigated the behavior of electrons in thin graphite films in real time.

As they now report in Physical Review Letters,* they recorded the dynamics of electrons with an unprecedented temporal resolution of only 10 femtoseconds (one femtosecond is a millionth of a billionth of a second). Electrons were excited to high energy states with ultrashort laser pulses, and their return to equilibrium was observed. The individual steps of this process are temporally resolved, and the momentary distribution of electrons in the material is identified. Within 30 femtoseconds, electrons form a hot gas with temperatures of 2500 C, which cools down to about 200 C in only 500 femtoseconds. The energy dissipated in this process is transferred to the crystal lattice. After this process, the electrons slowly return to their initial states.

For the first time, the study shows conclusively that, on ultrashort time scales, graphite behaves like a semiconductor, such as silicon or gallium arsenide, and not like a metal.

The observed dynamics have significant consequences for electrical transport, such as currents flowing through the material at high frequencies. The results are of fundamental importance for future electronic devices based on carbon, in which high electrical fields or frequencies are processed.

*Volume 102, Issue 08, 086809/1-4, 2009


Story Source:

The above story is based on materials provided by Forschungsverbund Berlin e.V. (FVB). Note: Materials may be edited for content and length.


Cite This Page:

Forschungsverbund Berlin e.V. (FVB). "Hot Electrons In Carbon: Graphite Behaves Like Semiconductor." ScienceDaily. ScienceDaily, 13 March 2009. <www.sciencedaily.com/releases/2009/03/090304091512.htm>.
Forschungsverbund Berlin e.V. (FVB). (2009, March 13). Hot Electrons In Carbon: Graphite Behaves Like Semiconductor. ScienceDaily. Retrieved July 30, 2014 from www.sciencedaily.com/releases/2009/03/090304091512.htm
Forschungsverbund Berlin e.V. (FVB). "Hot Electrons In Carbon: Graphite Behaves Like Semiconductor." ScienceDaily. www.sciencedaily.com/releases/2009/03/090304091512.htm (accessed July 30, 2014).

Share This




More Matter & Energy News

Wednesday, July 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Climate Change Could Cost Billions, According To White House

Climate Change Could Cost Billions, According To White House

Newsy (July 29, 2014) A report from the White House warns not curbing greenhouse gas emissions could cost the U.S. billions. Video provided by Newsy
Powered by NewsLook.com
Stranded Whale Watching Boat Returns to Boston

Stranded Whale Watching Boat Returns to Boston

Reuters - US Online Video (July 29, 2014) Passengers stuck overnight on a whale watching boat return safely to Boston. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Baluchistan Mining Eyes an Uncertain Future

Baluchistan Mining Eyes an Uncertain Future

AFP (July 29, 2014) Coal mining is one of the major industries in Baluchistan but a lack of infrastructure and frequent accidents mean that the area has yet to hit its potential. Duration: 01:58 Video provided by AFP
Powered by NewsLook.com
Easier Nuclear Construction Promises Fall Short

Easier Nuclear Construction Promises Fall Short

AP (July 29, 2014) The U.S. nuclear industry started building its first new plants using prefabricated Lego-like blocks meant to save time and prevent the cost overruns that crippled the sector decades ago. So far, it's not working. (July 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins