Featured Research

from universities, journals, and other organizations

Virus-free Embryonic-like Stem Cells Made From Skin Of Parkinson's Disease Patients

Date:
March 8, 2009
Source:
Whitehead Institute for Biomedical Research
Summary:
Deploying a method that removes potentially cancer-causing genes, researchers have "reprogrammed" human skin cells from Parkinson's disease patients into an embryonic-stem-cell-like state. Scientists then used these so-called induced pluripotent stem (iPS) cells to create dopamine-producing neurons, the cell type that degenerates in Parkinson's disease patients. This marks first time researchers have generated human iPS cells, successfully removed the potentially problematic reprogramming genes, and seen the cells maintain their embryonic stem-cell-like state.

Whitehead Institute researchers "reprogrammed" human skin cells from Parkinson's disease patients into an embryonic-stem-cell-like state. After removing the reprogramming genes, the scientists used these so-called induced pluripotent stem (iPS) cells to create dopamine-producing neurons, the cell type that degenerates in Parkinson's disease patients. To confirm that the iPS cells had become dopamine-producing neurons, the researchers stained the cells green for a neuron-specific protein (class III beta-tubulin) and red for a dopamine-producing neuron-specific enzyme (tyrosine hydroxylase).
Credit: Image courtesy of Whitehead Institute for Biomedical Research

Whitehead Institute researchers have developed a novel method to remove potential cancer-causing genes during the reprogramming of skin cells from Parkinson's disease patients into an embryonic-stem-cell-like state. Scientists then used the resulting induced pluripotent stem (iPS) cells to derive dopamine-producing neurons, the cell type that degenerates in Parkinson's disease patients.

This marks the first time researchers have generated human iPS cells that have maintained their embryonic stem-cell-like properties after the removal of reprogramming genes. The findings are published in the March 6 edition of the journal Cell.

"Until this point, it was not completely clear that when you take out the reprogramming genes from human cells, the reprogrammed cells would actually maintain the iPS state and be self-perpetuating," says Frank Soldner, a postdoctoral researcher in Whitehead Member Rudolf Jaenisch's laboratory and co-author of the article.

Since August 2006, researchers have been reprogramming adult cells into iPS cells by using viruses to transfer four genes (Oct4, Sox2, c-Myc and Klf4) into the cells' DNA. Although necessary for reprogramming cells, these genes, the known oncogene c-Myc in particular, also have the potential to cause cancer. In addition, the four genes interact with approximately 3000 other genes in the cell, which may change how the cell functions. Therefore, leaving the genes behind in successfully reprogrammed cells may cause unintended alterations that limit the cells' applicability for therapeutic use, for drug screens or to study disease in cell culture.

In the current method, Whitehead researchers used viruses to transfer the four reprogramming genes and a gene coding for the enzyme Cre into skin cells from Parkinson's disease patients. The reprogramming genes were bracketed by short DNA sequences, called loxP, which are recognized by the enzyme Cre.

After the skin cells were reprogrammed to iPS cells, the researchers introduced the Cre enzyme into the cells, which removed the DNA between the two loxP sites, thereby deleting the reprogramming genes from the cells. The result is a collection of iPS cells with genomes virtually identical to those of the Parkinson's disease patients from whom original skin cells came.

Removing the reprogramming genes is also important because of those genes' effect on an iPS cell's gene expression (a measure of which genes the cell is using and how much it's using those genes). When the researchers compared the gene expressions of human embryonic stem cells to iPS cells with and without the reprogramming factors, iPS cells without the reprogramming genes had a gene expression closer to human embryonic stem cells than to the same iPS cells that still contained the reprogramming genes.

"The reprogramming factors are known to bind to and affect the expression of 3,000 genes in the entire genome, so having artificial expression of those genes will change the cell's overall gene expression," Dirk Hockemeyer, who is also a co-author of the Cell article. "That's why the four reprogramming genes can mess up the system so much. From now on, it will be tough for researchers to leave the reprogramming genes in iPS cells."

Jaenisch says that the process to remove the reprogramming genes is very successful, when compared with earlier experiments. "Other labs have reprogrammed mouse cells and removed the reprogramming genes, but it was incredibly inefficient, and they couldn't get it to work in human cells," he says. "We have done it much more efficiently, in human cells, and made reprogrammed, gene-free cells."

After removing the reprogramming genes, the Jaenisch researchers differentiated the cells from the Parkinson's disease patients into dopamine-producing nerve cells. In Parkinson's disease patients, these cells in the brain die or become impaired, causing such classic Parkinson's symptoms as tremors, slowed movement, and balance problems.

Because the cells reside in the patients' brains, researchers cannot easily access them to investigate how the disease progresses at the cellular level, what kills the cells, or what might prevent cellular damage. Therefore, the ability to create patient-specific iPS cells, derive the dopamine-producing cells, and study those patient-specific cells in the lab could be a great advantage for Parkinson's disease researchers.

Although the initial results are extremely promising, Jaenisch acknowledges that the process is far from over. "The next step is to use these iPS-derived cells as disease models, and that's a high bar, a real challenge. I think a lot of work has to go into that."


Story Source:

The above story is based on materials provided by Whitehead Institute for Biomedical Research. Note: Materials may be edited for content and length.


Journal Reference:

  1. Frank Soldner et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell, March 5, 2009

Cite This Page:

Whitehead Institute for Biomedical Research. "Virus-free Embryonic-like Stem Cells Made From Skin Of Parkinson's Disease Patients." ScienceDaily. ScienceDaily, 8 March 2009. <www.sciencedaily.com/releases/2009/03/090305121649.htm>.
Whitehead Institute for Biomedical Research. (2009, March 8). Virus-free Embryonic-like Stem Cells Made From Skin Of Parkinson's Disease Patients. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/03/090305121649.htm
Whitehead Institute for Biomedical Research. "Virus-free Embryonic-like Stem Cells Made From Skin Of Parkinson's Disease Patients." ScienceDaily. www.sciencedaily.com/releases/2009/03/090305121649.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Fears Keep Guinea Hospitals Empty

Ebola Fears Keep Guinea Hospitals Empty

AP (Oct. 23, 2014) Fears of Ebola are keeping doctors and patients alike away from hospitals in the West African nation of Guinea. (Oct. 23) Video provided by AP
Powered by NewsLook.com
Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
More People Diagnosed With TB In 2013, But There's Good News

More People Diagnosed With TB In 2013, But There's Good News

Newsy (Oct. 22, 2014) The World Health Organizations says TB numbers rose in 2013, but it's partly due to better detection and more survivors. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins