Featured Research

from universities, journals, and other organizations

New View Of Oceanic Phytoplankton

Date:
March 21, 2009
Source:
University of Hawaii at Manoa
Summary:
Oceanographers describe a novel strategy for phytoplankton growth in the vast nutrient-poor habitats of tropical and subtropical seas.

CTD (Conductivity, Temperature, Depth) rosette is deployed.
Credit: Lance A. Fujieki

Phytoplankton comprise the forests of the sea, and are responsible for providing nearly half of the oxygen that sustains life on Earth including our own. However, unlike their counterparts on land, the marine plants are nearly exclusively microscopic in size, and mostly out of human sight. Consequently, we are still in a very early stage of understanding even the most basic aspects of phytoplankton biology and ecology.

In a new paper published in Nature, an international team of scientists, including two University of Hawaii at Manoa (UHM) microbial oceanographers, describe a novel strategy for phytoplankton growth in the vast nutrient-poor habitats of tropical and subtropical seas. The research team was led by Benjamin Van Mooy of the Woods Hole Oceanographic Institution on Cape Cod, MA, with key contributions by UHM scientists Michael Rappé and David Karl of the School of Ocean and Earth Science and Technology (SOEST) and UH's new Center for Microbial Oceanography (C-MORE).

Until now, it was thought that all cells are surrounded by membranes containing molecules called phospholipids – oily compounds that contain phosphorus, as well as other basic elements including carbon and nitrogen. These phospholipids are fundamental to the structure and function of the cell and for this reason had been thought to be an indispensable component of life. Phospholipids are one of several classes of molecules that contain the element phosphorus, which has been shown to be in very short supply in many marine ecosystems. The deep sea contains ample phosphorus but delivery to the surface waters where photosynthesis occurs is limited by temperature-induced stratification and the inability to mix the ocean to depths where phosphorus is available. Indeed, research conducted at Station ALOHA near Hawaii during the past two decades has shown that phosphorus is rapidly becoming less abundant in the stratified regions of the North Pacific Ocean, possibly a result of changes in the marine habitat due to greenhouse gas warming.

Van Mooy and colleagues discovered that phytoplankton in the open ocean may be adapting to the low levels of phosphorus by making a fundamental change to their cell structure. Rather than synthesizing the phosphorus-requiring phospholipids for use in their membranes, the plants appear to be using non-phosphorus containing "substitute lipids" that use the nearly unlimited element sulfur also found in seawater instead of phosphorus. These substitute sulfolipids apparently allow the plants to continue to grow and survive under conditions of phosphorus stress, a unique strategy for life in the sea.

To test the generality of this biochemical strategy, the authors compared the response of the phytoplankton communities in different ocean basins that experience varying levels of phosphorus stress. In regions where phosphorus stress is extreme, such as the area dubbed the Sargasso Sea in the central North Atlantic Ocean, phospholipids were nearly nonexistent. By comparison, in the South Pacific Ocean, where sufficient phosphorus exists, there were large amounts of phospholipids. The region around Hawaii was intermediate, which is consistent with the long-term data sets from the Hawaii Ocean Time-series program showing that phosphorus is still measurable but is disappearing from the surface waters at an alarming rate.

One prediction from this initial study is that the phytoplankton in Hawaiian waters are likely to become more like those in the Sargasso Sea over time as phosphorus supplies dwindle further. To date, the ability to synthesize substitute lipids appears to be restricted to the phytoplankton; heterotrophic bacteria and other organisms must have a different strategy for survival, or none at all. This has implications for the future structure, biodiversity and function of Hawaiian marine ecosystems, including fish production and long-term carbon dioxide sequestration.


Story Source:

The above story is based on materials provided by University of Hawaii at Manoa. Note: Materials may be edited for content and length.


Journal Reference:

  1. Benjamin A. S. Van Mooy, Helen F. Fredricks, Byron E. Pedler, Sonya T. Dyhrman, David M. Karl, Michal Koblíek, Michael W. Lomas, Tracy J. Mincer, Lisa R. Moore, Thierry Moutin, Michael S. Rappé & Eric A. Webb. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature, 2009; 458 (7234): 69 DOI: 10.1038/nature07659

Cite This Page:

University of Hawaii at Manoa. "New View Of Oceanic Phytoplankton." ScienceDaily. ScienceDaily, 21 March 2009. <www.sciencedaily.com/releases/2009/03/090310100839.htm>.
University of Hawaii at Manoa. (2009, March 21). New View Of Oceanic Phytoplankton. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2009/03/090310100839.htm
University of Hawaii at Manoa. "New View Of Oceanic Phytoplankton." ScienceDaily. www.sciencedaily.com/releases/2009/03/090310100839.htm (accessed August 20, 2014).

Share This




More Plants & Animals News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Possible Ebola Patient in Isolation at California Hospital

Possible Ebola Patient in Isolation at California Hospital

Reuters - US Online Video (Aug. 20, 2014) — A patient who may have been exposed to the Ebola virus is in isolation at the Kaiser Permanente South Sacramento Medical Center. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Flower Power! Dandelions Make Car Tires?

Flower Power! Dandelions Make Car Tires?

Reuters - Business Video Online (Aug. 20, 2014) — Forget rolling on rubber, could car drivers soon be traveling on tires made from dandelions? Teams of scientists are racing to breed a type of the yellow flower whose taproot has a milky fluid with tire-grade rubber particles in it. As Joanna Partridge reports, global tire makers are investing millions in research into a new tire source. Video provided by Reuters
Powered by NewsLook.com
Unsustainable Elephant Poaching Killed 100K In 3 Years

Unsustainable Elephant Poaching Killed 100K In 3 Years

Newsy (Aug. 20, 2014) — Poachers have killed 100,000 elephants between 2010 and 2012, as the booming ivory trade takes its toll on the animals in Africa. Video provided by Newsy
Powered by NewsLook.com
Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Awesome New Camouflage Sheet Was Inspired By Octopus Skin

Newsy (Aug. 19, 2014) — Scientists have developed a new device that mimics the way octopuses blend in with their surroundings to hide from dangerous predators. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins