Featured Research

from universities, journals, and other organizations

Protein Is Key To Embryonic Stem Cell Differentiation

Date:
March 25, 2009
Source:
Burnham Institute
Summary:
Investigators have learned that a protein called Shp2 plays a critical role in the pathways that control decisions for differentiation or self-renewal in both human embryonic stem cells and mouse embryonic stem cells.

Investigators at Burnham Institute for Medical Research (Burnham) have learned that a protein called Shp2 plays a critical role in the pathways that control decisions for differentiation or self-renewal in both human embryonic stem cells (hESCs) and mouse embryonic stem cells (mESCs).

Related Articles


The research, led by Gen-Sheng Feng, Ph.D., differs with some earlier findings that suggested hESCs and mESCs differentiate as a result of different signaling mechanisms. The discovery that Shp2 has a conserved role between mice and humans suggests an interesting common signaling mechanism between mESCs and hESCs, despite the known distinct signaling paths and biological properties between the two types of pluripotent stem cells.

Embryonic stem cells (ESCs) are pluripotent cells that can differentiate to become more than 200 different cell types. Because of their plasticity, ESCs have been suggested as potential therapies for numerous diseases and conditions, including neurodegenerative diseases, spinal cord injury and tissue damage. Development of such therapies is largely dependent on fully understanding and controlling the processes that lead to differentiation of hESCs into specialized cell types.

“There are many signaling pathways that help embryonic stem cells decide their fate,” said Dr. Feng. “We found that the Shp2 protein acts as a coordinator that fine-tunes the signal strength of multiple pathways and gives us a better understanding of the fundamental signaling methods that determine whether a stem cell’s fate will be self-renewal or differentiation.”

In the study, the Feng lab created mutant Shp2 mESCs and showed that differentiation was dramatically impaired as the cells self-renewed as stem cells. The researchers also demonstrated small interfering RNAs in hESCs reduce Shp2 expression and subsequent cell differentiation. Feng and colleagues screened chemical libraries and identified a small-molecule inhibitor of Shp2 that, in small doses, partially inhibits differentiation in both mESCs and hESCs. Taken together, these results suggest a conserved role for Shp2 in ESC differentiation and self-renewal in both mice and humans.

“This opens the door for new experimental reagents that will amplify the self-renewal process to create more stem cells for research and potential clinical use in the future,” Dr. Feng added. “This research also suggests that comparative analysis of mouse and human embryonic stem cells will provide fundamental insight into the cellular processes that determine ‘stemness,’ a critical question that remains to be answered in the stem cell biology field.”

The study was published online in the journal PLoS One on March 17, 2009.


Story Source:

The above story is based on materials provided by Burnham Institute. Note: Materials may be edited for content and length.


Cite This Page:

Burnham Institute. "Protein Is Key To Embryonic Stem Cell Differentiation." ScienceDaily. ScienceDaily, 25 March 2009. <www.sciencedaily.com/releases/2009/03/090318140528.htm>.
Burnham Institute. (2009, March 25). Protein Is Key To Embryonic Stem Cell Differentiation. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2009/03/090318140528.htm
Burnham Institute. "Protein Is Key To Embryonic Stem Cell Differentiation." ScienceDaily. www.sciencedaily.com/releases/2009/03/090318140528.htm (accessed October 30, 2014).

Share This



More Health & Medicine News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Mind-Controlled Prosthetic Arm Restores Amputee Dexterity

Reuters - Innovations Video Online (Oct. 29, 2014) A Swedish amputee who became the first person to ever receive a brain controlled prosthetic arm is able to manipulate and handle delicate objects with an unprecedented level of dexterity. The device is connected directly to his bone, nerves and muscles, giving him the ability to control it with his thoughts. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Google To Use Nanoparticles, Wearables To Detect Disease

Google To Use Nanoparticles, Wearables To Detect Disease

Newsy (Oct. 29, 2014) Google X wants to improve modern medicine with nanoparticles and a wearable device. It's all an attempt to tackle disease detection and prevention. Video provided by Newsy
Powered by NewsLook.com
Can Drinking Milk Lead To Early Death?

Can Drinking Milk Lead To Early Death?

Newsy (Oct. 29, 2014) Researchers in Sweden released a study showing heavy milk drinkers face an increased mortality risk from a variety of causes. Video provided by Newsy
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins