Featured Research

from universities, journals, and other organizations

New Material Could Help Cut Future Energy Losses

Date:
March 23, 2009
Source:
University of Liverpool
Summary:
Scientists have developed a new material to further understanding of how superconductors could be used to transmit electricity to built-up areas and reduce global energy losses.

Scientists at the University of Liverpool and Durham University have developed a new material to further understanding of how superconductors could be used to transmit electricity to built-up areas and reduce global energy losses.

Related Articles


The team have produced a material from a football-shaped molecule, called carbon60, to demonstrate how a superconductor – an element, compound or alloy that does not oppose the steady passage of an electric current – could work at temperatures suitable for commercial use in cities and towns.

Superconductors are considered as one of the world's greatest scientific discoveries and today play an important role in medical technology. In 1911, as part of an experiment with solid mercury, Dutch scientist Heike Kamerlingh Onnes, discovered that when mercury was cooled to low temperatures, electricity could pass through it in a steady flow without meeting resistance and losing energy as heat.

Superconductors are now widely used as magnets in magnetic resonance imaging (MRI), which help scientists visualise what is happening inside the human body. They are also demonstrated in train lines as magnets to reduce the friction between the train and its tracks. Superconductors have been developed to function at high temperatures, but the structure of the material is so complex that scientists have yet to understand how they could operate at room temperature for future use in providing power to homes and companies.

Professor Matt Rosseinsky, from Liverpool's Department of Chemistry, explains: "Superconductivity is a phenomenon we are still trying to understand and particularly how it functions at high temperatures. Superconductors have a very complex atomic structure and are full of disorder. We made a material in powder form that was a non-conductor at room temperature and had a much simpler atomic structure, to allow us to control how freely electrons moved and test how we could manipulate the material to super-conduct."

Professor Kosmas Prassides, from Durham University, said: "At room pressure the electrons in the material were too far apart to super-conduct and so we 'squeezed' them together using equipment that increases the pressure inside the structure. We found that the change in the material was instantaneous – altering from a non-conductor to a superconductor. This allowed us to see the exact atomic structure at the point at which superconductivity occurred."

The research, published in Science and supported by the Engineering and Physical Sciences Research Council (EPSRC), will allow scientists to search for materials with the right chemical and structural ingredients to develop superconductors that will reduce future global energy losses.


Story Source:

The above story is based on materials provided by University of Liverpool. Note: Materials may be edited for content and length.


Cite This Page:

University of Liverpool. "New Material Could Help Cut Future Energy Losses." ScienceDaily. ScienceDaily, 23 March 2009. <www.sciencedaily.com/releases/2009/03/090319142407.htm>.
University of Liverpool. (2009, March 23). New Material Could Help Cut Future Energy Losses. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2009/03/090319142407.htm
University of Liverpool. "New Material Could Help Cut Future Energy Losses." ScienceDaily. www.sciencedaily.com/releases/2009/03/090319142407.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) — A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins