Featured Research

from universities, journals, and other organizations

Lab-grown Nerves Promote Nerve Regeneration After Injury

Date:
March 20, 2009
Source:
University of Pennsylvania School of Medicine
Summary:
Researchers have engineered transplantable living nerve tissue that encourages and guides regeneration in an animal model. They have successfully grown, transplanted, and integrated axon bundles that act as "jumper cables" to the host tissue in order to bridge a damaged section of nerve.

A surviving cluster of transplanted neurons at the graft extremity (top) with axons in the center (bottom). In both images, transplanted nerve cells are labeled green and axons are stained red. These axons are a mix of the transplanted axons and host axons, which intertwined as regeneration occurred directly across the transplanted tissue.
Credit: Doug Smith, MD, University of Pennsylvania School of Medicine

Researchers at the University of Pennsylvania School of Medicine have engineered transplantable living nerve tissue that encourages and guides regeneration in an animal model. Results were published in March in the journal Tissue Engineering Part A.

About 300,000 Americans suffer peripheral nerve injuries every year, in many cases resulting in permanent loss of motor function, sensory function, or both. These injuries are a common consequence of trauma or surgery, but there are insufficient means for repair, according to neurosurgeons. In particular, surgeons need improved methods to coax nerve fibers known as axons to regrow across major nerve injuries to reconnect healthy targets, for instance muscle or skin.

“We have created a three-dimensional neural network, a living conduit in culture, which can be transplanted en masse to an injury site,” explains senior author Douglas H. Smith, MD, Professor, Department of Neurosurgery and Director of the Center for Brain Injury and Repair at Penn. Smith and colleagues have successfully grown, transplanted, and integrated axon bundles that act as ‘jumper cables’ to the host tissue in order to bridge a damaged section of nerve.

Previously, Smith and colleagues have “stretch-grown” axons by placing neurons from rat dorsal root ganglia (clusters of nerves just outside the spinal cord) on nutrient-filled plastic plates. Axons sprouted from the neurons on each plate and connected with neurons on the other plate. The plates were then slowly pulled apart over a series of days, aided by a precise computer-controlled motor system.

These nerves were elongated to over 1 cm over seven days, after which they were embedded in a protein matrix (with growth factors), rolled into a tube, and then implanted to bridge a section of nerve that was removed in a rat.

“That creates what we call a ‘nervous-tissue construct’,” says Smith. “We have designed a cylinder that looks similar to the longitudinal arrangement of the nerve axon bundles before it was damaged. The long bundles of axons span two populations of neurons, and these neurons can have axons growing in two directions - toward each other and into the host tissue at each side."

The constructs were transplanted to bridge an excised segment of the sciatic nerve in rats. Up to 16 weeks post-transplantation, the constructs still had their pre-transplant shape, with surviving transplanted neurons at the extremities of the constructs spanned by tracts of axons.

Remarkably, the host axons appeared to use the transplanted axons as a living scaffold to regenerate across the injury. The authors found host and graft axons intertwined throughout the transplant region, suggesting a new form of axon-mediated axonal regeneration. “Regenerating axons grew across the transplant bridge and became totally intertwined with the transplanted axons,” says Smith

Axons throughout the transplant region showed extensive myelination, the fatty layer surrounding axons. What’s more, graft neurons had extended axons beyond the margins of the transplanted region, penetrating deep into the host nerve. Remarkably, the constructs survived and integrated without the use of immunosuppressive drugs, challenging the conventional wisdom regarding immune tolerance in the peripheral nervous system.

The researchers suspect that the living nerve-tissue construct encourages the survival of the supporting cells left in the nerve sheath away from the injury site. These are cells that further guide regeneration and provide the overall structure of the nerve.

“This may be a new way to promote nerve regeneration where it may not have been possible before,” says co-first author D. Kacy Cullen, PhD, a post doctoral fellow in the Smith lab. “It’s a race against time - if nerve regeneration happens too slowly, as may be the case for major injuries, the support cells in the extremities can degenerate, blunting complete repair. Because our living axonal constructs actually grow into the host nerve sheath, they may ‘babysit’ these support cells to give the host more time to regenerate.”

The other co-first author is Jason Huang, MD, Assistant Professor of Neurosurgery at Rochester University, who participated in the study during his Neurosurgical residency at Penn.

This work was funded by the National Institutes of Neurological Disorders and Stroke and the Sharpe Trust.


Story Source:

The above story is based on materials provided by University of Pennsylvania School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jason H. Huang, D. Kacy Cullen, Kevin D. Browne, Robert Groff, Jun Zhang, Bryan J. Pfister, Eric L. Zager, Douglas H. Smith. Long-Term Survival and Integration of Transplanted Engineered Nervous Tissue Constructs Promotes Peripheral Nerve Regeneration. Tissue Engineering Part A, 2009; 090220122151069 DOI: 10.1089/ten.tea.2008.0294

Cite This Page:

University of Pennsylvania School of Medicine. "Lab-grown Nerves Promote Nerve Regeneration After Injury." ScienceDaily. ScienceDaily, 20 March 2009. <www.sciencedaily.com/releases/2009/03/090319160122.htm>.
University of Pennsylvania School of Medicine. (2009, March 20). Lab-grown Nerves Promote Nerve Regeneration After Injury. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2009/03/090319160122.htm
University of Pennsylvania School of Medicine. "Lab-grown Nerves Promote Nerve Regeneration After Injury." ScienceDaily. www.sciencedaily.com/releases/2009/03/090319160122.htm (accessed July 31, 2014).

Share This




More Health & Medicine News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dangerous Bacteria Kills One in Florida

Dangerous Bacteria Kills One in Florida

AP (July 31, 2014) Sarasota County, Florida health officials have issued a warning against eating raw oysters and exposing open wounds to coastal and inland waters after a dangerous bacteria killed one person and made another sick. (July 31) Video provided by AP
Powered by NewsLook.com
Health Insurers' Profits Slide

Health Insurers' Profits Slide

Reuters - Business Video Online (July 30, 2014) Obamacare-related costs were said to be behind the profit plunge at Wellpoint and Humana, but Wellpoint sees the new exchanges boosting its earnings for the full year. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Peace Corps Pulls Workers From W. Africa Over Ebola Fears

Newsy (July 30, 2014) The Peace Corps is one of several U.S.-based organizations to pull workers out of West Africa because of the Ebola outbreak. Video provided by Newsy
Powered by NewsLook.com
Weather Kills 2K A Year, But Storms Aren't The Main Offender

Weather Kills 2K A Year, But Storms Aren't The Main Offender

Newsy (July 30, 2014) Health officials say 2,000 deaths occur each year in the U.S. due to weather, but it's excessive heat and cold that claim the most lives. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins