Featured Research

from universities, journals, and other organizations

Understanding Channel-Like Erosion

Date:
March 24, 2009
Source:
Tulane University
Summary:
A new article examines how groundwater flow beneath the surface of the earth impacts the rate of erosion. The topic has local interest because it has recently been observed that significant erosion is occurring on New Orleans area levees primarily caused by seepage driven flow.

The March issue of Nature Geoscience features a paper co-authored by Kyle M. Straub, an assistant professor in the Department of Earth & Environmental Sciences at Tulane University, that examines how groundwater flow beneath the surface of the earth impacts the rate of erosion.

The topic has local interest because it has recently been observed that significant erosion is occurring on New Orleans area levees primarily caused by seepage driven flow.

Recently work began by the U.S. Army Corps of Engineers to plug in the shipping channel known as the Mississippi River-Gulf Outlet Canal (MRGO) that extends for 76 miles from New Orleans through wetlands to the Gulf of Mexico. The erosion of thousands of acres of cypress wetlands and marsh caused by the channel has been blamed for increased storm surge during Hurricane Katrina in 2005.

“Our theory would suggest that seepage caused by underwater flow will continue to erode and weaken the levee system around New Orleans, but the rate of this erosion should gradually slow with time,” says Straub. “Hopefully this research will aid the U.S. Army Corps of Engineers in identifying levees that need repair and assessing the lifespan of structures like the MRGO that are not planned for upkeep.”

Using fieldwork conducted in the Florida Panhandle, Straub and his fellow researchers were able to better understand the process of seepage erosion, which occurs when the re-emergence of groundwater at the surface shapes the Earth's topography. In the Nature Geoscience article, they present a new theory about how channels on the Earth’s surface can be carved through erosion associated with the reemergence of groundwater at natural springs.

The paper suggests that the velocity at which channel heads advance is proportional to the flux of groundwater to the heads. The researchers used field observations and numerical modeling to come up with the theory. To demonstrate how it works, they created computer animations depicting how the network of deep ravines in Florida grew over time.

Straub says that this theory of growth laws for seepage driven channels can also be applied to better understand the topographical features of planet Mars, as well as Earth.

“Within earth science, the subject is of interest because of its fundamental role in sculpting landscapes. The animations provide an explicit answer to the age-old question of how particularly striking and visually attractive erosional features on Earth's surface attained their modern form,” explains Straub. “The problem is of topical interest in planetary science because channelized features on Mars are thought, but not proven, to have arisen from groundwater flow.”


Story Source:

The above story is based on materials provided by Tulane University. Note: Materials may be edited for content and length.


Cite This Page:

Tulane University. "Understanding Channel-Like Erosion." ScienceDaily. ScienceDaily, 24 March 2009. <www.sciencedaily.com/releases/2009/03/090320164313.htm>.
Tulane University. (2009, March 24). Understanding Channel-Like Erosion. ScienceDaily. Retrieved April 19, 2014 from www.sciencedaily.com/releases/2009/03/090320164313.htm
Tulane University. "Understanding Channel-Like Erosion." ScienceDaily. www.sciencedaily.com/releases/2009/03/090320164313.htm (accessed April 19, 2014).

Share This



More Earth & Climate News

Saturday, April 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drought Concerns May Hurt Lake Tourism

Drought Concerns May Hurt Lake Tourism

AP (Apr. 18, 2014) Operators of recreational businesses on western reservoirs worry that ongoing drought concerns will keep boaters and other visitors from flocking to the popular summer attractions. (April 18) Video provided by AP
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com
Ark. Man Finds 6-Carat Diamond At State Park

Ark. Man Finds 6-Carat Diamond At State Park

Newsy (Apr. 18, 2014) An Arkansas man has found a nearly 6.2-carat diamond, which he dubbed "The Limitless Diamond," at the Crater of Diamonds State Park. Video provided by Newsy
Powered by NewsLook.com
Deadly Avalanche Sweeps Slopes of Mount Everest

Deadly Avalanche Sweeps Slopes of Mount Everest

AP (Apr. 18, 2014) At least six Nepalese guides are dead after an avalanche swept the slopes of Mount Everest along a route used to climb the world's highest peak. (April 18) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins