Featured Research

from universities, journals, and other organizations

Cause Of Mussel Poisoning Identified

Date:
April 1, 2009
Source:
Helmholtz Association of German Research Centres
Summary:
The origin of the neurotoxin azaspiracid has finally been identified after a search for more than a decade. The azaspiracid toxin group can cause severe poisoning in human consumers of mussels after being enriched in the shellfish tissues. Scientists now report that a tiny algal species, the dinoflagellate Azadinium spinosum, is responsible.

Azadinium spinosum causes mussel poisoning by the production of azaspiracid (left: light microscopic image, right: SEM).
Credit: Urban Tillmann, Alfred Wegener Institute

The origin of the neurotoxin azaspiracid has finally been identified after a search for more than a decade.

Related Articles


The azaspiracid toxin group can cause severe poisoning in human consumers of mussels after being enriched in the shellfish tissues. The scientific periodical European Journal of Phycology reports in its current issue (Vol. 44/1: p. 63-79) that a tiny algal species, the dinoflagellate Azadinium spinosum, is responsible.

Researchers from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association have isolated and described the hitherto unknown organism as a new genus and species of dinoflagellate. They successfully isolated the organism and multiplied it in pure laboratory cultures, subsequently identifying it as the producer of azaspiracid toxin.

Eating mussels is a special treat for many people, although it is not completely without danger. It has been known for a long time that consumption of mussels and other bivalve shellfish can cause poisoning in humans, with symptoms ranging from diarrhea, nausea, and vomiting to neurotoxicological effects, including paralysis and even death in extreme cases. Although "shellfish poisoning" can also be caused by pathogenic viruses and bacteria, many cases are due to gastrointestinal toxins and/or neurotoxins produced by certain marine microscopic plankton, the so-called "toxic algae". Mussels can filter a high amount of these toxic microorganisms from the seawater column, and after ingestion they retain the toxins and accumulate them in their edible flesh.

Azaspiracids comprise one group of these microalgal toxins The first known azaspiracid poisonings occurred in the Netherlands in 1995 after consumption of mussels from Ireland. While the toxin itself has been quite well investigated, the question of the origin remained inconclusive until now despite intensive research. According to published investigations by Irish researchers, the dinoflagellate species Protoperidinium crassipes (previously regarded as harmless) has been blamed as the origin of the toxins since 2003.

Researchers from the Working Group on Ecological Chemistry, particularly the biologist Dr. Urban Tillmann and the chemist Dr. Bernd Krock from the Alfred Wegener Institute for Polar and Marine Research were able to show that Protoperidinium is only the vector and not the producer of the toxins, just like other voracious protozoa and mussels. They isolated a small alga from the North Sea off the Scottish east coast and described it as a new dinoflagellate species Azadinium spinosum while providing evidence of its azaspiracid production in the laboratory.

"We are able to produce so-called gene probes from our laboratory cultures with the help of molecular techniques", explains Tillmann. "These gene probes prove the existence of the toxin-producing algae in seawater samples and they offer an effective future early warning system for mussel farms", Tillmann continues.

Apart from these applied aspects, the researchers are interested in quite fundamental questions: why does the alga produce these azaspiracid toxins and what are their ecological functions? The researchers have already planned the next expedition in order to further pursue these questions - they will head out into the North Sea with RV Heincke at the end of April 2009.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. Urban Tillmann, Malte Elbraumlchter, Bernd Krock, Uwe John, Allan Cembella. Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. European Journal of Phycology, 2009; 44 (1): 63 DOI: 10.1080/09670260802578534

Cite This Page:

Helmholtz Association of German Research Centres. "Cause Of Mussel Poisoning Identified." ScienceDaily. ScienceDaily, 1 April 2009. <www.sciencedaily.com/releases/2009/03/090324111558.htm>.
Helmholtz Association of German Research Centres. (2009, April 1). Cause Of Mussel Poisoning Identified. ScienceDaily. Retrieved March 26, 2015 from www.sciencedaily.com/releases/2009/03/090324111558.htm
Helmholtz Association of German Research Centres. "Cause Of Mussel Poisoning Identified." ScienceDaily. www.sciencedaily.com/releases/2009/03/090324111558.htm (accessed March 26, 2015).

Share This


More From ScienceDaily



More Plants & Animals News

Thursday, March 26, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Jockey Motion Tracking Reveals Racing Prowess

Jockey Motion Tracking Reveals Racing Prowess

Reuters - Innovations Video Online (Mar. 26, 2015) Using motion tracking technology, researchers from the Royal Veterinary College (RVC) are trying to establish an optimum horse riding style to train junior jockeys, as well as enhance safety, health and well-being of both racehorses and jockeys. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Botswana Talks to End Illegal Wildlife Trade

Botswana Talks to End Illegal Wildlife Trade

AFP (Mar. 25, 2015) Experts are gathering in Botswana to try to end the illegal wildlife trade that is decimating populations of elephants, rhinos and other threatened species. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Elephants Help Keep 18-Wheeler From Toppling Over

Elephants Help Keep 18-Wheeler From Toppling Over

Newsy (Mar. 25, 2015) The Natchitoches Parish Sheriff&apos;s Office discovered two elephants keeping a tractor-trailer that had gotten stuck in some mud upright on a highway. Video provided by Newsy
Powered by NewsLook.com
Baby 'pet' Orangutan Rescued from Chicken Cage Takes First Steps

Baby 'pet' Orangutan Rescued from Chicken Cage Takes First Steps

Reuters - Light News Video Online (Mar. 25, 2015) Buti, a baby orangutan who was left malnourished in a chicken cage before his rescue, takes his first steps after months of painful physical therapy. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins