Featured Research

from universities, journals, and other organizations

Gel-Based Glue Fastens Snails To Wet Surfaces, Model For Surgical Adhesive

Date:
May 7, 2009
Source:
Ithaca College
Summary:
A species of slug produces a defensive gel it can chemically convert into a remarkably strong glue. Similar gel-based glues attach some snails firmly onto slippery rocks; tools are needed to pry them off. The tenacity of these glues on wet surfaces is difficult to match with artificial adhesives.

A species of slug (Arion subfuscus) produces a defensive gel it can chemically convert into a remarkably strong glue. Similar gel-based glues attach some snails firmly onto slippery rocks; tools are needed to pry them off. The tenacity of these glues on wet surfaces is difficult to match with artificial adhesives.
Credit: Wikimedia Commons/Public Domain Image

A species of slug (Arion subfuscus) produces a defensive gel it can chemically convert into a remarkably strong glue. Similar gel-based glues attach some snails firmly onto slippery rocks; tools are needed to pry them off. The tenacity of these glues on wet surfaces is difficult to match with artificial adhesives.

Following up on their original research identifying the key characteristics controlling this transition from a water-based gel into a powerful yet flexible adhesive, researchers at Ithaca College have shed new light on the nature of the adhesive mechanism. Their findings could lead to developing surgical adhesives that would bind to wet surfaces and be less invasive than suturing mechanisms.

“The strength of the natural adhesive comes from the way long, rope-like polymers chemically tie together, or cross link, at certain points,” said Andrew Smith, associate professor of biology. “In our previous studies we had shown that metals were essential to the formation of cross-links. This is unusual, as some combination of electrostatic and hydrophobic interactions are commonly responsible for the formation of cross-links in other gels.”

Electrostatic interactions occur when a negatively charged group on one polymer is attracted to a positively charged group on another. Hydrophobic interactions take place when regions of a polymer don’t interact with water, so they stick together to avoid contacting water.

“We used several approaches to break these interactions, and the treatments that normally disrupt them had no impact on the glue’s mechanical integrity or ability to set,” Smith said. “Our study conclusively showed that electrostatic and hydrophobic interactions do not play any detectable role. Removing metals alone caused the glue to fall apart. This was exciting and unexpected.”

Removing the metals, however, didn’t completely break down the gel. The researchers discovered that a specific protein was responsible for forming strong cross-links that were unaffected when the metals were removed after the glue set. But when metals were removed before the glue set, the cross-links didn’t form.

“This is a very unusual material we’re looking at,” Smith said. “By discovering that metals are central to forming cross-links, we know there are several intriguing mechanisms that could hold the glue together.”

For example, zinc, calcium and iron ions can bind very strongly to several molecules at the same time, thereby effectively joining them together. Iron and copper can also catalyze reactions that trigger strong cross-link formation.

“The significance of this is that we are much farther along the path to our goal of identifying how the glue works so that synthetic mimics can be made,” Smith said.


Story Source:

The above story is based on materials provided by Ithaca College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Smith et al. Robust cross-links in molluscan adhesive gels: Testing for contributions from hydrophobic and electrostatic interactions. Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology, 2009; 152 (2): 110 DOI: 10.1016/j.cbpb.2008.10.004

Cite This Page:

Ithaca College. "Gel-Based Glue Fastens Snails To Wet Surfaces, Model For Surgical Adhesive." ScienceDaily. ScienceDaily, 7 May 2009. <www.sciencedaily.com/releases/2009/05/090501200853.htm>.
Ithaca College. (2009, May 7). Gel-Based Glue Fastens Snails To Wet Surfaces, Model For Surgical Adhesive. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/05/090501200853.htm
Ithaca College. "Gel-Based Glue Fastens Snails To Wet Surfaces, Model For Surgical Adhesive." ScienceDaily. www.sciencedaily.com/releases/2009/05/090501200853.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins