Science News
from research organizations

Tumor Growth Predicted With Mathematical Model

Date:
May 12, 2009
Source:
University of Granada
Summary:
Researchers have found a mathematical model that will allow them to carry out experiments on tumor cell proliferation processes and find out their behavior. ‘Acting on the cell-cell communication process to try to control gene activation or deactivation may become an alternative therapy to fight tumor growth in the near future’, explained the director of the research.
Share:
       
FULL STORY

Researchers from the University of Granada (on the fields of biology, chemistry, medicine and physics) have found a math model that will allow them to carry out experiments on tumour cell proliferation processes and find out their behaviour. ‘Acting on the cell-cell communication process to try to control gene activation or deactivation may become an alternative therapy to fight tumour growth in the near future’, explained Juan Soler, director of the research.

The work, led by Soler, from the Departamento de Matemática Aplicada de la UGR, will allow improving traditional tests with animal models, which were until now the key to describe tumour growth mechanisms. Moreover, with this tool researchers can carry out experiments changing the variables that are present in the biological process with more control and in coordination with clinical trials. This will make research in the field of tumour growth easier, and will save tests with embryos, mice or chickens, which were essential until now.

This model is specific to reproduce the tumour cell-cell communication process and reproduces with great accuracy all the mechanisms of chemical signal transmission, the cell reception of such signals and changes of the cellular functions resulting from such communication. All this has been achieved by using differential equations to describe each variable used which are integrated by means of complex equation systems that, once resolved, are contrasted with the results of the same processes in a real model. This way, the model is adjusted and readjusted until it does represent the biological process requested.

The mathematical advance necessary for the development of the model has been complemented by wide research work into the fields of biology and cellular physiology. More specifically, cellular communication chemical mechanisms deriving from the Sonic Hedgehog (SHH) protein and its equivalent in flies, called HH, which play an important function in the spreading of information on the growth and development of cellular groups. The function this protein plays when it activates the GLI gene -which in turn affect tumour control- has been analysed.

In different experiments, scientists, in collaboration with Molecular Biology centre Severo Ochoa and the University of Geneva, have proven that SHH transport control can make mice in vivo inoculated tumours disappear.

This research was funded with 150,900 euros by the Andalusian Ministry for Innovation.


Story Source:

The above post is reprinted from materials provided by University of Granada. Note: Materials may be edited for content and length.


Cite This Page:

University of Granada. "Tumor Growth Predicted With Mathematical Model." ScienceDaily. ScienceDaily, 12 May 2009. <www.sciencedaily.com/releases/2009/05/090512093410.htm>.
University of Granada. (2009, May 12). Tumor Growth Predicted With Mathematical Model. ScienceDaily. Retrieved August 5, 2015 from www.sciencedaily.com/releases/2009/05/090512093410.htm
University of Granada. "Tumor Growth Predicted With Mathematical Model." ScienceDaily. www.sciencedaily.com/releases/2009/05/090512093410.htm (accessed August 5, 2015).

Share This Page: