Featured Research

from universities, journals, and other organizations

Move Any Mountain: New Research Tracks Track Snowmelt Accurately

Date:
May 18, 2009
Source:
NASA/Jet Propulsion Laboratory
Summary:
Water is constantly being moved about our planet. The water, or hydrologic, cycle describes how water changes from liquid to solid to vapor and how it is stored in a variety of places: under the ground, in the atmosphere and ocean and in the form of ice and snow. Thanks to new research from NASA, it is now easier to accurately track snowmelt -- water from snowpacks that melt in spring -- in mountainous regions.

The headwaters of the Rio Grande upriver of the Del Norte gauging station. Intensive study areas are numbered 1-6. SNOTEL sites are denoted by white squares and National Weather Service Cooperative Observer meteorological stations are denoted by yellow diamonds.
Credit: Image courtesy of NASA/Jet Propulsion Laboratory/Global Climate Change

Water is constantly being moved about our planet. The water, or hydrologic, cycle describes how water changes from liquid to solid to vapor and how it is stored in a variety of places: under the ground, in the atmosphere and ocean and in the form of ice and snow. Thanks to new research from NASA's Jet Propulsion Laboratory (JPL), it is now easier to accurately track snowmelt -- water from snowpacks that melt in spring -- in mountainous regions.

Related Articles


Understanding what happens to water in mountainous areas is a challenge. Often the topography of the land is complicated, the seasons bring big changes in water levels and datasets for mountainous regions are typically sparse. In these landscapes, water falls to the ground as snow and, in warmer climates, when spring arrives, snowpacks often thaw and melt, causing the melted water to flow overland as snowmelt.

Snow cover is relatively easy to track using satellites that orbit Earth. But to piece together the water cycle in detail, scientists want to be able to measure snow water equivalent -- a quantity that describes the amount of water contained within the snowpack, or the depth of water that would be produced if the entire snowpack melted instantaneously -- over large areas and with high precision. Noah Molotch, a snow hydrologist at JPL, has combined data from NASA's Earth-observing satellites with a new mathematical snowmelt model to estimate snow water equivalent in the headwaters of the Rio Grande basin in Colorado's San Juan Mountains in the U.S. His technique can estimate the equivalent down to a scale of 100 meters (328 feet) over an area of 3,419 square kilometers (1,320 square miles) -- 10 times the area covered by previous snowmelt reconstruction techniques.

The Rio Grande basin ranges in height from 2,400 to 4,200 meters (7,900 to 13,800 feet). Sixty percent of the yearly precipitation is snow that falls during the winter months, with the snow persisting until May or July, depending on the elevation. Molotch's snowmelt model calculates the change in mass of the snowpack using three factors. First, the snow melting rate, which depends on solar radiation and air temperature. Second, the depletion rate of the snow-covered area, which is measured by NASA's Landsat-7 satellite and Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board the Terra satellite. These missions take photos of Earth's continents and coastal regions. Third, the maximum snow water equivalent that has built up at the start of the melting season is calculated by adding up all of the predicted snowmelt over the time it takes to melt the snow in a given 100-meter (328-foot) "pixel."

Using this approach, Molotch shows that it is possible to track snow mass at new accuracy levels and over large mountain regions without needing to rely on measurements taken on the ground -- a major advantage. According to his results, snow water equivalent in the Rio Grande can be estimated to within about 23 percent of the actual amount under a variety of climatic conditions. Ultimately, the technique could make it possible to measure snowmelt and its contribution to the global water cycle in real time.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Journal References:

  1. N. P. Molotch. Reconstructing snow water equivalent in the Rio Grande headwaters using remotely sensed snow cover data and a spatially distributed snowmelt model. Hydrological Processes, 2009; 23 (7): 1076 DOI: 10.1002/hyp.7206
  2. N. P. Molotch & S. A. Margulis. Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: A multi-resolution, multi-sensor comparison. Advances in Water Resources, 2008; 31 (11): 1503 DOI: 10.1016/j.advwatres.2008.07.017

Cite This Page:

NASA/Jet Propulsion Laboratory. "Move Any Mountain: New Research Tracks Track Snowmelt Accurately." ScienceDaily. ScienceDaily, 18 May 2009. <www.sciencedaily.com/releases/2009/05/090513234814.htm>.
NASA/Jet Propulsion Laboratory. (2009, May 18). Move Any Mountain: New Research Tracks Track Snowmelt Accurately. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2009/05/090513234814.htm
NASA/Jet Propulsion Laboratory. "Move Any Mountain: New Research Tracks Track Snowmelt Accurately." ScienceDaily. www.sciencedaily.com/releases/2009/05/090513234814.htm (accessed October 26, 2014).

Share This



More Earth & Climate News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

EU Gets Climate Deal, UK PM Gets Knock

EU Gets Climate Deal, UK PM Gets Knock

Reuters - Business Video Online (Oct. 24, 2014) EU leaders achieve a show of unity by striking a compromise deal on carbon emissions. But David Cameron's bid to push back EU budget contributions gets a slap in the face as the European Commission demands an extra 2bn euros. David Pollard reports. Video provided by Reuters
Powered by NewsLook.com
Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Raw: Tornado Rips Roofs in Washington State

Raw: Tornado Rips Roofs in Washington State

AP (Oct. 24, 2014) A rare tornado ripped roofs off buildings, uprooted trees and shattered windows Thursday afternoon in the southwest Washington city of Longview, but there were no reports of injuries. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Fast-Moving Lava Headed For Town On Hawaii's Big Island

Fast-Moving Lava Headed For Town On Hawaii's Big Island

Newsy (Oct. 24, 2014) Lava from the Kilauea volcano on Hawaii's Big Island has accelerated as it travels toward a town called Pahoa. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins