Featured Research

from universities, journals, and other organizations

Most Polluted Ecosystems Can Recover, Study Finds

Date:
May 28, 2009
Source:
Yale University
Summary:
Most polluted or damaged ecosystems worldwide can recover within a lifetime if societies commit to their cleanup or restoration, according to a new analysis.

Most polluted or damaged ecosystems worldwide can recover within a lifetime if societies commit to their cleanup or restoration, according to an analysis of 240 independent studies by researchers at the Yale School of Forestry & Environmental Studies. Their findings will appear in the June edition of the journal PLoS ONE.

Related Articles


The Yale researchers found that forest ecosystems recovered in 42 years on average, while ocean bottoms recovered in less than 10 years. When examined by disturbance type, ecosystems undergoing multiple, interacting disturbances recovered in 56 years, and those affected by either invasive species, mining, oil spills or trawling recovered in as little as five years. Most ecosystems took longer to recover from human-induced disturbances than from natural events, such as hurricanes.

"The damages to these ecosystems are pretty serious," said Oswald Schmitz, an ecology professor at the Yale School of Forestry & Environmental Studies and co-author of the meta-analysis with Yale Ph.D. student Holly Jones. "But the message is that if societies choose to become sustainable, ecosystems will recover. It isn't hopeless."

The Yale analysis focuses on seven ecosystem types, including marine, forest, terrestrial, freshwater and brackish, and addresses recovery from major anthropogenic disturbances: agriculture, deforestation, eutrophication, invasive species, logging, mining, oil spills, overfishing, power plants and trawling and from the interactions of those disturbances. Major natural disturbances, including hurricanes and cyclones, are also accounted for in the analysis.

The researchers analyzed data derived from peer-reviewed studies conducted over the past century that examined the recovery of large ecosystems following the cessation of a disturbance. The studies measured 94 variables that were grouped into three categories: ecosystem function, animal community and plant community.

The researchers quantified the recovery of each of the variables in terms of the time it took for them to return to their pre-disturbance state as determined by the expert judgment of each study's author. The Yale analysis found that 83 studies demonstrated recovery for all variables; 90 reported a mixture of recovered and non-recovered variables; and 67 reported no recovery for any variable. Schmitz said 15 percent of all the ecosystems in the analysis are beyond recovery. Also, 54 percent of the studies that reported no recovery likely did not run long enough to draw definitive conclusions.

In addition, the analysis suggests that an ecosystem's recovery may be independent of its degraded condition. Aquatic systems, the researchers noted, may recover more quickly because species and organisms that inhabit them turn over more rapidly than, for example, forests whose habitats take longer to regenerate after logging or clear-cutting.

The researchers point out that a potential "pitfall" of the analysis is that the ecosystems may have already been in a disturbed state when they were originally examined. Many ecosystems across the globe that have experienced extinctions and other fundamental changes as a result of human activities, combined with the ongoing effects of climate change and pollution, are far removed from their historical, natural pristine state. Thus ecologists measured recovery on the basis of an ecosystem's more recent condition. The study points out the need for the development of objective criteria to decide when a system has fully recovered.

The researchers said the analysis rebuts speculation that it will take centuries or millennia for degraded ecosystems to recover and justifies an increased effort to restore degraded areas for the benefit of future generations. "Restoration could become a more important tool in the management portfolio of conservation organizations that are entrusted to protect habitats on landscapes," said Schmitz.

Jones added: "We recognize that humankind has and will continue to actively domesticate nature to meet its own needs. The message of our paper is that recovery is possible and can be rapid for many ecosystems, giving much hope for a transition to sustainable management of global ecosystems."


Story Source:

The above story is based on materials provided by Yale University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Holly P. Jones, Oswald J. Schmitz. Rapid Recovery of Damaged Ecosystems. PLoS ONE, 2009; 4 (5): e5653 DOI: 10.1371/journal.pone.0005653

Cite This Page:

Yale University. "Most Polluted Ecosystems Can Recover, Study Finds." ScienceDaily. ScienceDaily, 28 May 2009. <www.sciencedaily.com/releases/2009/05/090527105713.htm>.
Yale University. (2009, May 28). Most Polluted Ecosystems Can Recover, Study Finds. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2009/05/090527105713.htm
Yale University. "Most Polluted Ecosystems Can Recover, Study Finds." ScienceDaily. www.sciencedaily.com/releases/2009/05/090527105713.htm (accessed October 30, 2014).

Share This



More Earth & Climate News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deadly Mudslide in Sri Lanka Buries Houses

Deadly Mudslide in Sri Lanka Buries Houses

AP (Oct. 29, 2014) A mudslide triggered by monsoon rains buried scores of workers' houses at a tea plantation in central Sri Lanka on Wednesday, killing at least 10 people and leaving more than 250 missing, an official said. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Galapagos Tortoises Bounce Back, But Ecosystem Lags

Galapagos Tortoises Bounce Back, But Ecosystem Lags

Newsy (Oct. 29, 2014) The Galapagos tortoise has made a stupendous recovery from the brink of extinction to a population of more than 1,000. But it still faces threats. Video provided by Newsy
Powered by NewsLook.com
Saharan Solar Project to Power Europe

Saharan Solar Project to Power Europe

Reuters - Business Video Online (Oct. 29, 2014) A solar energy project in the Tunisian Sahara aims to generate enough clean energy by 2018 to power two million European homes. Matt Stock reports. Video provided by Reuters
Powered by NewsLook.com
Obama: The US Will Not 'run and Hide' From Ebola

Obama: The US Will Not 'run and Hide' From Ebola

AP (Oct. 29, 2014) Surrounded by health care workers in the White House East Room, President Barack Obama said the U.S. will likely see additional Ebola cases in the weeks ahead. But he said the nation can't seal itself off in the fight against the disease. (Oct. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins