Featured Research

from universities, journals, and other organizations

Aluminum-oxide Nanopore Beats Other Materials For DNA Analysis

Date:
June 5, 2009
Source:
University of Illinois at Urbana-Champaign
Summary:
Fast and affordable genome sequencing has moved a step closer with a new solid-state nanopore sensor.

Rashid Bashir, a Bliss Professor of electrical and computer engineering and of bioengineering, center, led the researchers who developed a new solid-state nanopore sensor. He is flanked by graduate students Murali Venkatesan, left, and Sukru Yemenicioglu.
Credit: Photo by L. Brian Stauffer

Fast and affordable genome sequencing has moved a step closer with a new solid-state nanopore sensor being developed by researchers at the University of Illinois.

Related Articles


The nanopore sensor, made by drilling a tiny hole through a thin film of aluminum oxide, could ultimately prove capable of performing DNA analysis with a single molecule, offering tremendous possibilities for personalized medicine and advanced diagnostics.

"Solid-state nanopore sensors have shown superior chemical, thermal and mechanical stability over their biological counterparts, and can be fabricated using conventional semiconductor processes," said Rashid Bashir, a Bliss Professor of electrical and computer engineering and bioengineering, and the director of the university's Micro and Nanotechnology Laboratory.

"The aluminum-oxide nanopore sensors go a step further," Bashir said, "exhibiting superior mechanical properties, enhanced noise performance and increased lifetime over their silicon-oxide and silicon-nitride counterparts."

The researchers describe the fabrication and operation of the aluminum-oxide nanopore sensor in a paper accepted for publication in Advanced Materials, and posted on the journal's Web site.

To make the sensor, the researchers begin by using a technique called atomic layer deposition to produce a very thin film of aluminum oxide on a silicon substrate.

Next, the central portion of the substrate is etched away, leaving the film as a suspended membrane. An electron beam is then used to create a very tiny hole – a nanopore – in the membrane.

The process of making the nanopore resulted in an unexpected bonus, Bashir said. "As the electron beam forms the nanopore, it also heats the surrounding material, forming nanocrystallites around the nanopore. These crystals help to improve the mechanical integrity of the nanopore structure and could potentially improve noise performance as well."

The nanopore sensors described in the paper had pore diameters ranging in size from 4 to 16 nanometers, and a film thickness of approximately 50 nanometers. Thinner membranes are possible with atomic layer deposition, Bashir said, and would offer higher resolution of the detection.

"Thinner membranes can produce less noise as a molecule travels through the nanopore," said Bashir, who is also affiliated with the university's Beckman Institute, the Frederick Seitz Materials Research Laboratory, and the Institute for Genomic Biology. "Ultimately, we'd like to make our membranes as thin as biological membranes, which are about 5 nanometers thick."

To demonstrate the functionality of the aluminum-oxide nanopores, the researchers performed experiments with pieces of DNA containing approximately 5,000 base pairs. Bashir's team verified the detection of single molecules, with a signal-to-noise performance comparable to that achieved with other solid-state nanopore technology.

"More work must be done to achieve single base resolution, however," Bashir said. "Our next step is to detect and measure significantly shorter molecules."

With Bashir, co-authors of the paper are graduate students Bala Murali Venkatesan (lead author), Brian Dorvel, Sukru Yemenicioglu and Nicholas Watkins, and principal research scientist Ivan Petrov.

Funding was provided by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University of Illinois at Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University of Illinois at Urbana-Champaign. "Aluminum-oxide Nanopore Beats Other Materials For DNA Analysis." ScienceDaily. ScienceDaily, 5 June 2009. <www.sciencedaily.com/releases/2009/06/090602112307.htm>.
University of Illinois at Urbana-Champaign. (2009, June 5). Aluminum-oxide Nanopore Beats Other Materials For DNA Analysis. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2009/06/090602112307.htm
University of Illinois at Urbana-Champaign. "Aluminum-oxide Nanopore Beats Other Materials For DNA Analysis." ScienceDaily. www.sciencedaily.com/releases/2009/06/090602112307.htm (accessed October 26, 2014).

Share This



More Matter & Energy News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins