Featured Research

from universities, journals, and other organizations

Diet-induced Obesity Prevented In Mice With Engineered Metabolic Pathway

Date:
June 3, 2009
Source:
University of California - Los Angeles
Summary:
Though obesity has defied much of the research and treatments developed thus far, researchers may have discovered a completely new way to approach the problem. Scientists successfully constructed a non-native pathway in mice to increase fatty acid metabolism that results in a resistance to diet-induced obesity.

In recent years, obesity has taken on epidemic proportions in developed nations, contributing significantly to major medical problems, early death and rising health care costs. According to Centers for Disease Control and Prevention estimates, at least a quarter of all American adults and more than 15 percent of children and adolescents are obese.

While recent research advances and treatment methods have had little effect in reducing obesity levels, researchers at the UCLA Henry Samueli School of Engineering and Applied Science, in collaboration with the David Geffen School of Medicine at UCLA, may have discovered a completely new way to approach the problem.

In a study to be published in the June 3 issue of the journal Cell Metabolism, chemical and biomolecular engineering professor James Liao, associate professor of human genetics and pediatrics Katrina Dipple and their research team demonstrate how they successfully constructed a non-native pathway in mice that increased fatty acid metabolism and resulted in resistance to diet-induced obesity.

"When we looked at the fatty-acid metabolism issue, we noted there are two aspects of the problem that needed to be addressed," Liao said. "One is the regulation; fatty acid metabolism is highly regulated. The other is digestion of the fatty acid; there needs to be a channel to burn this fat."

"We came up with an unconventional idea which we borrowed from plants and bacteria," said Jason Dean, a graduate student on Liao's team and an author of the study. "We know plants and bacteria digest fats differently from humans, from mammals. Plant seeds usually store a lot of fat. When they germinate, they convert the fat to sugar to grow. The reason they can digest fat this way is because they have a set of enzymes that's uniquely present in plants and bacteria. These enzymes are called the 'glyoxylate shunt' and are missing in mammals."

To investigate the effects of the glyoxylate shunt on fatty acid metabolism in mammals, Liao's team cloned bacteria genes from Escherichia coli that would enable the shunt, then introduced the cloned E. coli genes into the mitochondria of liver cells in mice; mitochondria are where fatty acids are burned in cells.

The researchers found that the glyoxylate shunt cut the energy-generating pathway of the cell in half, allowing the cell to digest the fatty acid much faster than normal. They also found that by cutting through this pathway, they created an additional pathway for converting fatty acid into carbon dioxide. This new cycle allowed the cell to digest fatty acid more effectively.

"The significance of this is great. It is a unique approach to understanding metabolism. Perturbing metabolic pathways, such as introducing the glyoxylate shunt and seeing how it affects overall metabolism, is a novel way to understand the control of metabolism," Dipple said.

The team also found that the new pathway decreased the regulatory signal malonyl-CoA. When malonyl-CoA levels are high, a signal is released that tells the body it is too full and that it needs to stop using fat and begin making it. Malonyl-CoA is high after eating a meal, blocking fatty acid metabolism. The new pathway, however, allowed for fat degradation even when the body was full.

Ultimately, the research team found that mice with the glyoxylate shunt that were fed the same high-fat diet — 60 percent of calories from fat — for six weeks remained skinny, compared with mice without the shunt.

"One exciting aspect of this study is that it provides a proof-of-principle for how engineering a specific metabolic pathway in the liver can affect the whole body adiposity and response to a high-fat diet," said Karen Reue, a UCLA professor of human genetics and an author of the study. "This could have relevance in understanding, and potentially treating, human obesity and associated diseases, such as diabetes and heart disease."

"We are very hopeful," said Liao. "This is the first example of how people can build new genes into mammals to achieve a desired function. It's very exciting that we've been able to achieve this new pathway in mammals that could potentially be used to fight a very serious problem."


Story Source:

The above story is based on materials provided by University of California - Los Angeles. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Los Angeles. "Diet-induced Obesity Prevented In Mice With Engineered Metabolic Pathway." ScienceDaily. ScienceDaily, 3 June 2009. <www.sciencedaily.com/releases/2009/06/090602122619.htm>.
University of California - Los Angeles. (2009, June 3). Diet-induced Obesity Prevented In Mice With Engineered Metabolic Pathway. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2009/06/090602122619.htm
University of California - Los Angeles. "Diet-induced Obesity Prevented In Mice With Engineered Metabolic Pathway." ScienceDaily. www.sciencedaily.com/releases/2009/06/090602122619.htm (accessed August 27, 2014).

Share This




More Health & Medicine News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Predicting Heart Transplant Rejection With a Blood Test

Predicting Heart Transplant Rejection With a Blood Test

Ivanhoe (Aug. 27, 2014) Now a new approach to rejection of donor organs could change the way doctors predict transplant rejection…without expensive, invasive procedures. Video provided by Ivanhoe
Powered by NewsLook.com
Better Braces That Vibrate

Better Braces That Vibrate

Ivanhoe (Aug. 27, 2014) The length of time you have to keep your braces on could be cut in half thanks to a new device that speeds up the process. Video provided by Ivanhoe
Powered by NewsLook.com
Smartphone App Tracks Your Heart Rate

Smartphone App Tracks Your Heart Rate

Ivanhoe (Aug. 27, 2014) A new app that can track your heart rate 24/7 is available for download in your app store and its convenience could save your life. Video provided by Ivanhoe
Powered by NewsLook.com
Stroke in Young Adults

Stroke in Young Adults

Ivanhoe (Aug. 27, 2014) A stroke can happen at any time and affect anyone regardless of age. This mother chose to give her son independence and continue to live a normal life after he had a stroke at 18 years old. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins