Featured Research

from universities, journals, and other organizations

Long-standing Mystery Of How Plants Make Eggs Solved

Date:
June 10, 2009
Source:
University of California - Davis
Summary:
Scientists have discovered that a plant hormone called auxin is responsible for development of the egg cell in a plant's embryo sac. In unraveling this fundamental issue in plant biology, the work provides the first definitive report of a plant hormone acting as a morphogen and offers tantalizing new insights into the evolutionary pathway that flowering plants took 135 million years ago when they split off from gymnosperms.

A gradient (red) in the concentration of the plant hormone auxin determines that only one of the eight nuclei in a plant's embryo sac will become an egg. (The blue island in the image is a cell structure called a vacuole.)
Credit: Monica Alandete-Saez/UC Davis

A long-standing mystery surrounding a fundamental process in plant biology has been solved by a team of scientists at the University of California, Davis.

The group’s groundbreaking discovery that a plant hormone called auxin is responsible for egg production has several major implications.

First, this is the first definitive report of a plant hormone acting as a morphogen, that is, a substance that directs the pattern of development of cells based on its concentration.

Also, the study’s results provide tantalizing new insights into the evolutionary pathway that flowering plants took 135 million years ago when they split off from gymnosperms, the “naked-seeded” plant group that includes conifers, cycads and ginkgo trees.

Finally, the group used their discovery to make additional egg cells within plant reproductive structures, raising the prospects that these techniques may someday be used for enhancing the reproduction and fertility of crop plants.

“So the sequence becomes clear now,” said Venkatesan Sundaresan, the UC Davis professor of plant biology and plant sciences who led the study. “The plant triggers auxin synthesis at one end of the female reproductive unit called the embryo sac, creating an auxin gradient. The eight nuclei in the sac are then exposed to different levels of auxin, but only the nucleus in the correct position in the gradient becomes an egg cell. And that cell is subsequently fertilized to make the next generation.”

A paper describing the study was published June 4 in the journal Science’s online site, Science Express, in advance of its publication in the journal later this month.

Development of sperm and egg cells in plants

In humans and other animals, the germ cells for production of eggs and sperm are established at birth. But cells in flowering plants are assigned more or less randomly to become reproductive units when the plant reaches sexual maturity. Within the flower, sperm cells are produced by pollen at the tips of stamens, while egg cells develop in ovules, tiny structures embedded in the ovary at the base of the pistil.

At the start of the process of egg-cell development, a “mother cell” in the ovule divides several times, in a sequence involving both meiosis and mitotic divisions. These divisions result in the creation of an oblong, cell-like structure called the embryo sac, which contains eight nuclei, three of which are clustered near the open end of the ovule.

Within hours cell membranes start forming, eventually, creating seven cells: the all-important egg cell near the ovule opening where pollen will enter, and six other supporting cells, with essential functions for seed formation.

“The big question in our field for the past 50 years or more has been: How does this process happen in such a beautifully orchestrated pattern?” Sundaresan said. “It’s been clear that there’s a program here telling the plants exactly what to do, and that it is working not on cells, but on nuclei.”

Auxin concentrations determine fate of nuclei

Two years ago Sundaresan and a postdoctoral fellow in his laboratory, Gabriela Pagnussat, used genetic tools to shift the position of a single nucleus at one end of an embryo sac in the plant Arabidopsis. When they examined the mature sac, they found that it had produced two egg cells instead of one.

Sundaresan recognized that a pattern shift like this was similar to the response that had been reported two decades earlier in Drosophila fruit flies in experiments that provided the first direct evidence for the existence of morphogens.

This prompted him to begin searching for a substance in Arabadopsis that might be acting as a morphogen. When the group discovered that auxin was accumulating at the open end of the ovule, they turned their attention to this ubiquitous hormone, which is known to play myriad signaling roles in plant growth and behavioral processes. (The hormone’s existence was first guessed by Charles Darwin when he was studying how plants grow towards light.)

After many tests, Sundaresan and his group found that during embryo sac formation, auxin concentrations did indeed follow a gradient, with the highest levels occurring in the ovule at the end of the embryo sac where the pollen enters and lowest levels occurring at the opposite end of the sac.

To test the theory that this gradient was determining the fate of nuclei in the sac, Sundaresan and his group created a series of genetically manipulated Arabadopsis plants. In some plants they ratcheted up production of auxin in the embryo sac, and in others they decreased the sac’s sensitivity to auxin, creating the same effect that a decline in auxin would make.

When they examined these experimental plants, their hypothesis was confirmed: Auxin concentrations determined the fate of the nuclei. Knowing whether auxin levels were high or low, it became possible to predict the appearance or disappearance of egg cells at different positions within the embryo sac.

Finally, the group employed a long series of bio-manipulative techniques to determine that the auxin gradient they had discovered within the embryo sac was due to on-site synthesis rather than transport from a source outside the sac.

“What we have found about the way auxin works here is amazing,” Sundaresan said. “The idea that you can have a small molecule like this being maintained in a gradient within this eight-nucleate structure through synthesis alone is mind-boggling.”

Implications for flowering plant evolution

Development of the embryo sac is arguably the key element in the evolution from gymnosperms to flowering plants, also known as angiosperms.

Yet the fossil record reveals very little about the stages that led from gymnosperm seed production to angiosperm seed production when the transition occurred around 135 million years ago. The rapid expansion of flowering plants and their eventual domination of the Earth’s vegetation was called “an abominable mystery” by Darwin.

By elucidating the mechanism of embryo sac development, Sundaresan and his team have opened the door to new work into the evolutionary pathway between these two major plant groups. The discovery supports what is known as the modular theory, which posits that the first angiosperms underwent a drastic reduction of their female reproductive unit compared to the gymnosperms, allowing flowering plants to reproduce more efficiently and eventually supplant their naked-seeded forebears.

Most remarkably, perhaps, the new work suggests that the eight nuclei of the angiosperm embryo sac have retained developmental plasticity in their evolution from gymnosperms. “It’s amazing that even though the split supposedly happened over a hundred million years ago,” Sundaresan said, “all these nuclei still have the capacity to become egg cells.”

Collaborators in the study are lead author Gabriela Pagnussat and Monica Alandete-Saez, who were postdoctoral researchers with Sundaresan when they did the work, and John L. Bowman, a professor of plant biology at UC Davis at the time of the study, now at Monash University in Melbourne, Australia.

The work was supported by grants from the National Science Foundation.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Cite This Page:

University of California - Davis. "Long-standing Mystery Of How Plants Make Eggs Solved." ScienceDaily. ScienceDaily, 10 June 2009. <www.sciencedaily.com/releases/2009/06/090604144332.htm>.
University of California - Davis. (2009, June 10). Long-standing Mystery Of How Plants Make Eggs Solved. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2009/06/090604144332.htm
University of California - Davis. "Long-standing Mystery Of How Plants Make Eggs Solved." ScienceDaily. www.sciencedaily.com/releases/2009/06/090604144332.htm (accessed July 23, 2014).

Share This




More Plants & Animals News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Michigan Plant's Goal: Flower and Die

Michigan Plant's Goal: Flower and Die

AP (July 22, 2014) An 80-year-old agave plant, which is blooming for the first and only time at a University of Michigan conservatory, will die when it's done (July 22) Video provided by AP
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins