Featured Research

from universities, journals, and other organizations

Antibiotics Take Toll On Beneficial Microbes In Gut

Date:
July 2, 2009
Source:
University of Michigan Health System
Summary:
In mice, scientists have shown two types of antibiotics can cause moderate to wide-ranging changes in normally diverse, beneficial gut microbes. The findings have implications for minimizing diarrhea in vulnerable patients, and for treating inflammatory bowel disease and C. difficile.

Gastrointestinal microbes live in close contact with the intestinal mucosa.
Credit: Image courtesy of University of Michigan Health System

It’s common knowledge that a protective navy of bacteria normally floats in our intestinal tracts. Antibiotics at least temporarily disturb the normal balance. But it’s unclear which antibiotics are the most disruptive, and if the full array of “good bacteria” return promptly or remain altered for some time.

In studies in mice, University of Michigan scientists have shown for the first time that two different types of antibiotics can cause moderate to wide-ranging changes in the ranks of these helpful guardians in the gut. In the case of one of the antibiotics, the armada of “good bacteria” did not recover its former diversity even many weeks after a course of antibiotics was over.

The findings could eventually lead to better choices of antibiotics to minimize side effects of diarrhea, especially in vulnerable patients. They could also aid in understanding and treating inflammatory bowel disease, which affects an estimated 500,000 to 1 million Americans, and Clostridium difficile, a growing and serious infection problem for hospitals.

Normally, a set of thousands of different kinds of microbes lives in the gut – a distinctive mix for each person, and thought to be passed on from mother to baby. The microbes, including many different bacteria, aid digestion and nutrition, appear to help maintain a healthy immune system, and keep order when harmful microbes invade.

“Biodiversity is a well-known concept in the health of the world’s continents and oceans. Diversity is probably important in the gut microsystem as well,” says Vincent B. Young, M.D., Ph.D., senior author of the study, which appears in the June issue of Infection and Immunity.

The study results suggest that unless medical research discovers how to protect or revitalize the gut microbial community, “we may be doing long-term damage to our close friends,” says Young, assistant professor in the departments of internal medicine and microbiology and immunology at the U-M Medical School.

Study details

Young and his colleagues used a culture-independent technique, using sequence analysis of 16S rRNA-encoding gene libraries, to profile the bacterial communities in the gut. It allows them to look for many more kinds of microbes than was possible with more limited methods. The result is a much more complete picture of the diversity of microbes in the gut.

Mice, which normally develop a diverse set of microbes after being born without one, then were given either cefoperazone, a broad-spectrum cephalosporin antibiotic, or a combination of three antibiotics (amoxicillin, bismuth and metronidazole). The scientists then observed what changes in the gut microbiota occurred immediately after the antibiotics were stopped or six weeks following the end of treatment.

“Both antibiotic treatments caused significant changes in the gut microbial community. However, in the mice given cefoperazone, there was no recovery of normal diversity. In other mice given the amoxicillin-containing combination, the microbiota largely recovered, but not completely,” says Young.

However, Young’s team found that a little socializing sparked recovery in even the most severely affected mice. Some of the mice given cefoperazone soon recovered normal microbes after an untreated mouse was placed in the same cage. That wasn’t a complete surprise, since mice have a habit of eating the feces of their cage mates and therefore picked up normal gut microbes quickly.

Not a lesson applicable to humans? In patients with refractory antibiotic-associated diarrhea due to C. difficile, there have been limited trials of treatments using “fecal transplants” to replace lost gut microbiota. Although this is a pretty unpalatable treatment at first glance, the clinical response was quite remarkable, Young says.

Implications

Although cefaperazone is not commonly used in the United States, related drugs such as cefoxitin are. The study findings suggest that it is really important to use antibiotics only when indicated, especially in people with health problems that might already compromise their gut microbe health, Young says. Multiple rounds of antibiotics may also deserve concern.

The findings will guide Young in related work in which he is using mouse models to examine how changes in the microbiota in the gut may influence how inflammatory bowel disease develops and progresses. The study will also inform ongoing research in his lab to gain insights into colitis associated with C. difficile infection. The Young laboratory recently published a study that demonstrates that long-term decreases in gut microbe diversity from repeated antibiotics are associated with recurring C. difficile infection in human patients.

Young cautions against concluding that popular probiotics supplements necessarily are safe and effective for everyone looking for a way to restore healthy gut microbes. An individual’s specific health needs and vulnerabilities have to be considered. “Probiotics may be part of the solution, but we don’t know that yet,” he says.

Other authors are: first author Dionysios A. Antonopoulos, Ph.D. Department of Internal Medicine, University of Michigan; Susan M. Huse, Ph.D., Mitchell L. Sogin,Ph.D., and Hilary G. Morrison, Ph.D., Marine Biological Laboratory, Woods Hole, Mass.; and Thomas M. Schmidt, Ph.D., Michigan State University.

Funding for the study came from the National Institutes of Health.

Citation: Infection and Immunity, Vol. 77, Issue 6, June 2009


Story Source:

The above story is based on materials provided by University of Michigan Health System. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan Health System. "Antibiotics Take Toll On Beneficial Microbes In Gut." ScienceDaily. ScienceDaily, 2 July 2009. <www.sciencedaily.com/releases/2009/06/090618170026.htm>.
University of Michigan Health System. (2009, July 2). Antibiotics Take Toll On Beneficial Microbes In Gut. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2009/06/090618170026.htm
University of Michigan Health System. "Antibiotics Take Toll On Beneficial Microbes In Gut." ScienceDaily. www.sciencedaily.com/releases/2009/06/090618170026.htm (accessed April 21, 2014).

Share This



More Plants & Animals News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Mich. Boy Unearths 10,000-Year-Old Mastodon Tooth

Newsy (Apr. 20, 2014) A 9-year-old Michigan boy was exploring a creek when he came across a 10,000-year-old tooth from a prehistoric mastodon. Video provided by Newsy
Powered by NewsLook.com
Vermont Goat Meat Gives Refugees Taste of Home

Vermont Goat Meat Gives Refugees Taste of Home

AP (Apr. 18, 2014) Dairy farmers and ethnic groups in Vermont are both benefiting from a unique collaborative effort that's feeding a growing need for fresh and affordable goat meat. (April 18) Video provided by AP
Powered by NewsLook.com
Man Claims He Found Loch Ness Monster With... Apple Maps?

Man Claims He Found Loch Ness Monster With... Apple Maps?

Newsy (Apr. 18, 2014) Andy Dixon showed the Daily Mail a screenshot of what he believes to be the mythical beast swimming just below the lake's surface. Video provided by Newsy
Powered by NewsLook.com
First Ever 'Female Penis' Discovered In Animal Kingdom

First Ever 'Female Penis' Discovered In Animal Kingdom

Newsy (Apr. 18, 2014) Not only are these newly discovered bugs' sex organs reversed, but they also mate for up to 70 hours. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins