Featured Research

from universities, journals, and other organizations

Immobilized Microbes Can Break Down Potentially Harmful Phthalates

Date:
July 8, 2009
Source:
Inderscience Publishers
Summary:
Immobilized microbes can break down potentially harmful phthalates, according to researchers writing in the International Journal of Environment and Pollution. The microbes might be used to treat industrial waste water and so prevent these materials from entering the environment.

Plastic bottles and other pollution on the shore of Bicaz Lake, Romania. Phthalic Acid Esters (PAEs), commonly known as phthalates, are widely used as additives in polymer manufacture as plasticizers.
Credit: iStockphoto/Stιphane Bidouze

Immobilized microbes can break down potentially harmful phthalates, according to researchers in China, writing in the International Journal of Environment and Pollution. The microbes might be used to treat industrial waste water and so prevent these materials from entering the environment.

Phthalic Acid Esters (PAEs), commonly known as phthalates, are widely used as additives in polymer manufacture as plasticizers. They do not readily degrade in the environment and so have become widely distributed in natural water, wastewater, soils, and sediment.

Concerns about their suspected ability to cause genetic mutations and cancer have led to their listing as priority pollutants by the US Environmental Protection Agency, the European Union, the China National Environmental Monitoring Centre, and other regulatory authorities.

Weizhong Wu of the College of Environmental Sciences and Engineering, at Peking University, in Beijing, and Xianlin Meng of Harbin Institute of Technology, in Nangang District, have identified and isolated a microbe that can digest one of the most common PAEs, d-n-butyl phthalate. This compound is widely used and is one of the most frequently found in diverse environmental samples including groundwater, river water, drinking water, open ocean water, soil humates, lake sediments and marine sediments, the researchers say.

They have now used acclimation and enrichment techniques to ferment adequate quantities of the active microbe, which was obtained from the activated sludge from a wastewater treatment plant. It was enriched and acclimated by incubating activated sludge. This involves cultivating the microbes in a solution containing phthalate as the only source of carbon for the microbes. Successive divisions of microbial cells quickly leads to the evolution of a strain that can quickly metabolize the phthalate and convert it into the raw materials for microbial growth and reproduction.

The researchers then tested this phthalate-digesting microbe by immobilizing cells on a new type of ceramic honeycomb support. They then measured the before and after concentration of phthalate in a simulated wastewater sample. Initial concentration was 100 milligrams per liter which fell to less than 1.0 milligram per liter within two days of treatment with the microbial honeycomb.

The team points out that the rate of degradation was two and a half times faster with immobilized microbes than with microbes floating free in the sample.


Story Source:

The above story is based on materials provided by Inderscience Publishers. Note: Materials may be edited for content and length.


Journal Reference:

  1. Biodegradation of plasticiser di-n-butyl phthalate by immobilised microbial cells. Int. J. Environment and Pollution, 2009, 38, 203-211

Cite This Page:

Inderscience Publishers. "Immobilized Microbes Can Break Down Potentially Harmful Phthalates." ScienceDaily. ScienceDaily, 8 July 2009. <www.sciencedaily.com/releases/2009/06/090619112325.htm>.
Inderscience Publishers. (2009, July 8). Immobilized Microbes Can Break Down Potentially Harmful Phthalates. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2009/06/090619112325.htm
Inderscience Publishers. "Immobilized Microbes Can Break Down Potentially Harmful Phthalates." ScienceDaily. www.sciencedaily.com/releases/2009/06/090619112325.htm (accessed September 17, 2014).

Share This



More Earth & Climate News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) — Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) — A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Researchers Explore Shipwrecks Off Calif. Coast

Researchers Explore Shipwrecks Off Calif. Coast

AP (Sep. 16, 2014) — Federal researchers are exploring more than a dozen underwater sites where they believe ships sank in the treacherous waters west of San Francisco in the decades following the Gold Rush. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Isolated N. Korea Asks For International Help With Volcano

Isolated N. Korea Asks For International Help With Volcano

Newsy (Sep. 16, 2014) — Mount Paektu volcano in North Korea is showing signs of life and there's not much known about it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins